Aplicación de isótopos estables como indicadores de flujos de energía en ambientes costeros de Uruguay

Autores/as

  • Leandro Bergamino Centro Universitario Regional Este (CURE), Universidad de la República, Rocha, Uruguay
  • Adriana Tudurí Universidad de la República, Facultad de Ciencias, Sección Oceanología, Uruguay
  • Carolina Bueno Universidad de la República, Facultad de Ciencias, Sección Oceanología, Uruguay
  • Ernesto Brugnoli Universidad de la República, Facultad de Ciencias, Sección Oceanología, Uruguay
  • Luciano Valenzuela Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Laboratorio de Ecología Evolutiva Humana (LEEH, Núcleo de Estudios Interdisciplinarios sobre Poblaciones Humanas de Patagonia Austral (NEIPHPA), Universidad Nacional del Centro de la Provincia de Buenos Aires, Unidad de Enseñanza Universitaria Quequén, Buenos Aires, Argentina.Department of Biology, University of Utah, Salt Lake City, Utah. Estados Unidos
  • Ana Martínez Unidad de Gestión Pesquera Atlántica, Dirección Nacional de Recursos Acuáticos (DINARA), Rocha, Uruguay
  • Laura Perez Becoña Centro Universitario Regional Este (CURE), Universidad de la República, Rocha, Uruguay
  • Fabrizio Scarabino Centro Universitario Regional Este (CURE), Universidad de la República, Rocha, Uruguay
  • Felipe García-Rodríguez Centro Universitario Regional Este (CURE), Universidad de la República, Rocha, Uruguay

DOI:

https://doi.org/10.26461/13.01

Palabras clave:

carbono, relación c/n, fuentes de materia orgánica, estuarios

Resumen

El análisis de isótopos estables en sedimentos, vegetales y animales representa una herramienta de importancia para estudios ecológicos, reconstrucciones paleoclimáticas y paleoambientales. Con base en la diferenciación isotópica entre productores primarios, esta técnica ha tenido un gran impacto en la identificación de flujos de energía entre ecosistemas terrestres y acuáticos adyacentes y en la estructura trófica. Se sintetizan aquí la nomenclatura y los principios básicos para la aplicación de isótopos estables en estudios de ambientes acuáticos. Además, se muestra su utilidad describiendo tres ejemplos recientes en ambientes costeros de Uruguay con diferentes objetivos: 1) evaluar el origen de la materia orgánica en sedimentos del Río de la Plata, 2) determinar la importancia trófica de una especie de diatomea en playas arenosas de Uruguay, y 3) evaluar la influencia de la materia orgánica antropogénica en la Bahía de Montevideo. La composición isotópica de las fuentes de materia orgánica permitió inferir los mecanismos involucrados en la transferencia de materia orgánica en los ecosistemas costeros. En esta revisión se subrayan las ventajas de este marcador isotópico de carbono que permite discriminar fuentes de materia orgánica. Asimismo, la combinación con otros análisis complementarios como la espectrofluorometría o los biopolímeros resulta importante en investigaciones de funcionamiento ecosistémico.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Bergamino, L., Lercari, D. y Defeo, O., 2011. Food web structure of sandy beaches: temporal and spatial variation using stable isotope analysis. En: Estuarine, Coastal and Shelf Science, 91, pp.536-543.

Bergamino, L., Martínez, A., Han, E., Lercari, D., y Defeo, O., 2016. Trophic niche shifts driven by phytoplankton in sandy beach ecosystems. En: Estuarine, Coastal and Shelf Science, 180, pp.33-40.

Bergamino, L., Schuerch, M., Tudurí, A., Carretero, S., y Garcia-Rodriguez, F., 2017. Linking patterns of freshwater discharge and sources of organic matter within the Río de la Plata estuary and adjacent marshes. En: Marine and Freshwater Research, en prensa.

Berke, M.A., Johnson, T.C., Werne J.P., Grice, K., Schouten, S., y Sinninghe Damsté J.S., 2012. Molecular records of climate variability and vegetation response since the Late Pleistocene in the Lake Victoria basin, East Africa. En: Quaternary Science Reviews, 55(8), pp.59-74.

Bueno, C., 2016. Isótopos estables de C y N, y la relación Corg/Norg como indicadores del origen de la materia orgánica en los sedimentos de la zona costera de Montevideo: un análisis histórico y actual. Montevideo: Facultad de Ciencias. (Tesis de Maestría).

Bueno, C., Brugnoli, E., Figueira, R.C.L., Muniz, P., Ferreira, P.A.L. y García Rodríguez, F., 2016. Historical economic and environmental policies influencing trace metal inputs in Montevideo Bay, Río de la Plata. En: Marine Pollution Bulletin, 113, pp.141-146.

Byrne, R., Ingram, L.B., Starratt, S. y Malamud-Roam, F., 2001. Carbon-isotope, diatom, and pollen evidence for late Holocene salinity change in a brackish marsh in the San Francisco Estuary. En: Quaternary Research, 55, pp.66-76.

Carlier, A., Riera, P., Amouroux, J.-M., Bodiou, J.-Y., Desmalades, M. y Grémare, A., 2008. Foodweb structure of two Mediterranean lagoons under varying degree of eutrophi-cation. En: Journal of Sea Research, 60, pp.264-275.

Caut, S., Angulo, E. y Courchamp, F., 2008. Caution on isotopic model use for analyses of consumer diet. En: Canadian Journal of Zoology, 86, pp.438-445.

Caut, S., Angulo, E. y Courchamp, F., 2009. Variation in discrimination factors (δ15N and δ13C): the effect of diet isotopic values and applications for diet reconstruction. En: Journal of Applied Ecology, 46, pp.443-453.

Cerling, T.E., Harris, J.M. y Leakey, M.G., 1999. Browsing and grazing in elephants: the isotope record of modern and fossil proboscideans. En: Oecologia, 120, pp.364-374.

Cole, M.L., Valiela, I., Kroeger; K.D., Tomasky; G.L., Cebrian, J., Wigand, C., McKinney, R.A., Grady S.P. y Carvalho da Silva, M.H., 2004. Assessment of δ15N isotopic method to indicate anthropogenic eutrophication in aquatic ecosystems. En: Journal of Environmental Quality, 33, pp.124-132.

Costanzo, S.D., Udy, J., Longstaff, B. y Jones, A., 2005. Using nitrogen stable isotope ratios (δ15N) of macroalgae to determine the effectiveness of sewage upgrades: changes in the extent of sewage plumes over four years in Moreton Bay, Australia. En: Marine Pollution Bulletin, 51, pp.212-217.

Craven, K.F., Edwards, R.J., y Flood, R.P., 2017. Source organic matter analysis of saltmarsh sediments using SIAR and its application in relative sea-level studies in regions of C4 plant invasion. En: Boreas, en prensa.

Dalerum, F. y Angerbjorn, A., 2005. Resolving temporal variation in vertebrate diets using naturally occuring stable isotopes. En: Oecologia, 144, pp.647-658.

Danulat, E., Muniz, P., García Alonso, J., y Yannicelli, B., 2002. First assessment of the highly contaminated harbour of Montevideo, Uruguay. En: Marine Pollution Bulletin, 44, pp.554-565.

DeNiro, M.J. y Epstein, S., 1978. Influence of diet on the distribution of car- bon isotopes in animals. En: Geochimica Et Cosmochimica Acta, 42, pp.495-506.

Finlay, J.C., Power, M.E. y Cabana, G., 1999. Effects of water velocity on algal carbon isotope ratios: implications for river food web studies. En: Limnology and Oceanography, 44, pp.1198-1203.

Franco-Trecu, V., Aurioles-Gamboa, D. y Inchausti, P., 2014. Individual trophic specialisation and niche segregation explain the contrasting population trends of two sympatric otariids. En: Marine Biology, 161, pp.609-618.

Fry, B., Baltz, D.M., Benfield, M., Fleeger, J., Gace, A., Haas, H. y Quiñones-Rivera, Z., 2003. Stable isotope indicators of movement and residency for brown shrimp (Farfantepenaeus aztecus) in coastal Louisiana marshscapes. En: Estuaries, 26, pp.82-97.

Gannes, L.Z., Martínez del Rio, C. y Koch, P., 1998. Natural abundance variations in stable isotopes and their potential uses in animal physiological ecology. En: Comparative Biochemistry and Physiology A – Molecular and Integrative Physiology, 119, pp.725-737.

García-Rodríguez, F., Brugnoli, E., Muniz, P., Venturini, N., Burone, L., Hutton, M. Rodríguez, M., Pita, A., Kandratavicius, N., Perez, L. y Verocai, J., 2014. Warm-phase ENSO events modulate the fluvial freshwater input and the trophic state of sediments in a large South American estuary. En: Marine and Freshwater Research, 65, pp.1-11.

Gaston, T.F. y Suthers, I.M., 2004. Spatial variation in d13C and d15N of liver, muscle and bone in a rocky reef planktivorous fish: the relative contribution of sewage. En: Journal of Experimental Marine Biology and Ecology, 304, pp.17-33.

Giberto, D. A., Bermec, C. A., Acha, E. M. y Mianzan, H., 2004. Large- scale spatial patterns of benthic assemblages in theSWAtlantic: the Rio de la Plata Estuary and adjacent shelf waters. En: Estuarine, Coastal and Shelf Science, 61, pp.1-13.

González Bergonzoni, I., Vidal, N., Wang, B., Ning, D., Liu, Z., Jeppesen, E. y Meerhoff, M., 2015. General validation of formalin-preserved fish samples in food web studies using stable isotopes. En: Methods in Ecology and Evolution, 6, pp.307-314.

Goñi, M.A., Teixeira, M.J. y Perkey, D.W., 2003. Sources and distribution of organic matter in a river-dominated estuary (Winyah Bay, SC, USA). En: Estuarine, Coastal and Shelf Science, 57, pp.1023-1048.

Gu, B., Schelske, C.L. y Brenner, M., 1996. Relationship between sediment and plankton isotope ratios (δ13C and δ15N) and primary productivity in Florida lakes. En: Canadian Journal of Fisheries and Aquatic Sciences, 53, pp.875-883.

Hoefs, J., 2009. Stable isotope geochemistry. 6ta. ed. Berlín: Springer-Verlag.

Jaime, P. y Menéndez, A.N., 2002Informe análisis del régimen hidrológico de los ríos Paraná y Uruguay Proyecto protección ambiental del Río de la Plata y su frente marítimo: prevención y control de la contaminación y restauración de hábitats PNUD/GEF, RLA/99/G31. Buenos Aires: Instituto Nacional del Agua.

Kaczmarska, I., Mather, L., Luddington, I.A., Muise, F. y Ehrman, J.M., 2014. Cryptic diversity in a cosmopolitan diatom known as Asterionellopsis glacialis (Fragilariaceae): implications for ecology, biogeography and taxonomy. En: American Journal of Botany, 101, pp.267-286.

Kendall, C., 1998. Tracing nitrogen sources and cycling in catchments. En: Kendall, C., McDonnell, J.J., eds., 1998. Isotope tracers in catchment hydrology. Amsterdam: Elsevier. pp.519-576.

Lamb, A.L., Wilson, G.P. y Leng, M.J., 2006. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. En: Earth Science Reviews, 75, pp.29-57.

Layman, C.A, Arrington, D.A., Montaña C.G. y Post, D.M., 2007. Can stable isotope ratios provide for community-wide measures of trophic structure? En: Ecology, 88, pp.42-48.

López Laborde, J.L. y Nagy, G.J., 1999. Hydrography and sediment transport characteristics of the Río de la Plata: a review. En: Perillo, M. E., Piccolo, M. C. y Pino-Quivira, M., eds., 1999. Estuaries of South America, their geomorphology and dynamics. Berlín: Springer. pp.133-157.

Martínez del Río, C., Wolf, N., Carleton, S.A., y Gannes, L.Z., 2009. Isotopic ecology ten years after a call for more laboratory experiments. En: Biological Reviews, 84, pp.91-111.

McPhaden, M. J., Zebiak, S.E. y Glantz, M.H., 2006. ENSO as an integrating concept in Earth science. En: Science, 314, pp.1740-1745.

McClelland, J.W., Valiela, I. y Michener, R.H., 1997. Nitrogen-stable isotope signatures in estuarine food webs: a record of increasing urbanization in coastal watersheds. En: Limnology and Oceanography, 42, pp.930-937.

McCutchan, J.H., Lewis, W.M., Kendall, C. y McGrath, C.C., 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. En: Oikos, 102, pp.378- 390.

Meyers, P.A., 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. En: Chemical Geology, 114, pp.289-302.

Michener, R.H., y Schell, D.M., 1994. Stable isotope ratios as tracers in marine aquatic food webs. En: Michener, R.H., Lajtha, K., eds., 1994. Stable isotopes in ecology and environmental science. 2da ed. Malden: Blackwell. pp.138-157.

Muniz, P., Venturini, N., Hutton, M., Kandratavicius, N., Pita, A., Brugnoli, E., Burone, L. y García-Rodríguez, F., 2011. Ecosystem health of Montevideo coastal zone: A multi approach using some different benthic indicators to improve a ten-year-ago assessment. En: Journal of Sea Research, 65, pp.38-50.

Nagy, G. J., Gómez-Erache, M., López, C. H. y Perdomo, A. C., 2002. Distribution patterns of nutrients and symptoms of eutrophication in the Rio de la Plata estuary. En: Hydrobiologia, 475/476, pp.125-139.

Newsome, S.D., Martínez del Rio, C., Bearhop, S. y Phillips, D.L., 2007. A niche for isotopic ecology. En: Frontiers in Ecology and the Environment, 5, pp.429-36.

Nier, A.O., 1947. A mass spectrometer for isotopes and gas analysis. En: Review of Scientific Instruments, 18, pp.398-411.

Odebrecht, C., Du Preez, D.R., Abreu, P.C. y Campbell, E.E., 2014. Surf zone diatoms: a review of the drivers, patterns and role in sandy beaches food chains. En: Estuarine, Coastal and Shelf Science, 150, pp.24-35.

O’Leary, M.H., 1981. Carbon isotope fractionation in plants. En: Phytochemistry, 20, pp. 553-567.

Perez, L., García-Rodríguez, F. y Hanebuth, T.J.J., 2017. Paleosalinity changes in the Río de la Plata estuary and on the adjacent Uruguayan continental shelf over the past 1200 years: an approach using diatoms as a proxy. En: Weckström, K., Saunders, K., Gell, P. y Skilbeck, G., eds., 2017. Applications of paleoenvironmental techniques in estuarine studies springer Netherlands Berlín: Springer. ISBN 978-94-024-0988-8.

Phillips, D.L., Inger, R., Bearhop, S., Jackson, A.L., Moore, J.W., Parnell, A.C., Semmens, B.X., y Ward, E.J., 2014. Best practices for use of stable isotope mixing models in food web studies. En: Canadian Journal of Zoology, 92, pp.823-835.

Post, D.M., 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. En: Ecology, 83, pp.703-718.

Riera, P., Stal, L. y Niewenhuize, J., 2000. Heavy δ15N in intertidal benthic algae and invertebrates in the Scheldt Estuary (the Netherlands): Effects of river nitrogen inputs. En: Estuarine, Coastal and Shelf Science, 51, pp.365-372.

Rodríguez-Graña, L., Calliari, C., Conde, D., Sellanes, J. y Urrutia, R., 2008. Food web of a SW Atlantic shallow coastal lagoon: spatial environmental variability does not impose substantial changes in the trophic structure. En: Marine Ecology Progress Series, 362, pp.69-83.

Rosenbauer, R.J., Swarzenski, P.W., Kendall, C., Orem, W.H., Hostettler, F.D., Rollog, M.E., 2009. A carbon, nitrogen, and sulfur elemental and isotopic study in dated sediment cores from the Louisiana Shelf. En: Geo-Marine Letters, 29, pp.415-429.

Rubenstein, D.R., y Hobson, K.A., 2004. From birds to butterflies: animal movement patterns and stable isotopes. En: Trends in Ecology and Evolution, 19, pp.256-263.

Sampaio, L., Freitas, R., Máguas, C., Rodrigues, A. y Quintino, V., 2010. Coastal sediments under the influence of multiple organic enrichment sources: An evaluation using carbon and nitrogen stable isotopes. En: Marine Pollution Bulletin, 60, pp.272-282.

Schmidt, S.N., Olden, J.D., Solomon, C.T. y Vander Zanden, M.J., 2007. Quantitative approaches to the analysis of stable isotope food web data. En: Ecology, 88, pp.2793-2802.

Schlacher, T.A., Liddell, B., y Gaston, T.F. y Schlacher-Hoenlinger, M., 2005. Fish track wastewater pollution to estuaries. En: Oecologia, 144, pp.570-584.

Sulzman, E.W., 2007. Stable isotope chemistry and measurement: a primer. En: Michener, R. y Lajtha, K., eds., 2007. Stable isotopes in ecology and environmental science. 2da ed. Boston: Blackwell Publishing. ISBN: 9781405126809.

Teece, M.A., y Fogel, M.L., 2004. Preparation of ecological and biochemical samples for isotope analysis. En: De Groot, P.A., ed., 2004. Handbook of stable isotope analytical techniquesVol. 1. Amsterdam: Elsevier. pp.177-202.

Tieszen, L.L., Boutton, T.W., Tesdahl, K.G. y Slade, N.A., 1983. Fractionation and turnover of stable carbon isotopes in animal tissues: implications for ?13C analysis of diet. En: Oecologia, 57, pp.32-37.

Vander Zanden, M.J. y Rasmussen, J.B., 2001. Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. En: Limnology and Oceanography, 46, pp.2061-2066.

Vander Zanden, M.J., Chandra, S., Allen, B.C., Reuter, J.E. y Goldman, C.R., 2003. Historical food web structure and restoration of native aquatic communities in the Lake Tahoe (California-Nevada) basin. En: Ecosystems, 6, pp.274-288.


Vanderklift, M.A. y Ponsard, S., 2003. Sources of variation in consumer-diet δ15N enrichment: a meta analysis. En: Oecologia, 136, pp.169-182.

Vizzini, S. y Mazzola, A., 2006. The effects of anthropogenic organic matter inputs on stable carbon and nitrogen isotopes in organisms from different trophic levels in a southern Mediterranean coastal area. En: Science of the Total Environment, 368, pp.723-731.

West, J. B., Bowen, G.J., Cerling, T.E. y Ehleringer, J.R., 2006. Stable isotopes as one of natures ecological recorders. En: Trends in Ecology and Evolution, 21, pp.408-414.

Zhao, Y., Wu, F., Fang, X. y Yang, Y., 2015. Topsoil C/N ratios in the Qilian Mountains area: Implications for the use of subaqueous sediment C/N ratios in paleo-environmental reconstructions to indicate organic sources. En: Palaeogeography, Palaeoclimatology, Palaeoecology, 426, pp.1-9

Descargas

Publicado

2017-06-19

Cómo citar

Bergamino, L., Tudurí, A., Bueno, C., Brugnoli, E., Valenzuela, L., Martínez, A., Perez Becoña, L., Scarabino, F., & García-Rodríguez, F. (2017). Aplicación de isótopos estables como indicadores de flujos de energía en ambientes costeros de Uruguay. INNOTEC, (13 ene-jun), 9–18. https://doi.org/10.26461/13.01

Número

Sección

Revisiones

Artículos más leídos del mismo autor/a