Effect of extreme low water levels 2020-2023 on the reproduction of migratory fish in the Uruguay River

Authors

  • Daniel Cataldo Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. Instituto de Ecología Genética y Evolución (IEGBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. https://orcid.org/0000-0002-3643-0809
  • Facundo Bordet Área de Gestión Ambiental, Comisión Técnica Mixta de Salto Grande, Concordia, Entre Ríos, Argentina. https://orcid.org/0000-0003-3650-8642
  • Lautaro Bruno Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. https://orcid.org/0009-0003-9355-4802

DOI:

https://doi.org/10.26461/27.04

Keywords:

climatic effect, potamodromos fish, ichthyoplankton

Abstract

The effect of extreme water level decreases on the reproduction of migratory fish in the Uruguay River was evaluated. Extreme water decreases have a negative effect on ichthyoplankton and provide new insights into the intensity of this effect during consecutive drought periods. The study compares the abundance and composition of ichthyoplankton during three consecutive reproductive periods (October-March) during extreme water level decreases in the river from 2020-2023, with data from the previous 10 years (2010-2020) through weekly samplings at four sites within the Salto Grande reservoir. Compared to the previous decade, decreases in the abundances of P. lineatus (60-85 %), Pseudoplatystoma spp. (52-79 %), L. patí (39-82 %), Pimelodus spp. (24-61 %), and Anostomidae (26-56 %) were observed, as well as temporal changes in ichthyoplankton density. Unlike the previous period (2010-2020), where harmful cyanobacteria blooms developed during summer droughts, during the extraordinary period caused by a hydrological phenomenon, no cyanobacteria bloom events were recorded. The absence of this harmful effect, combined with the resilience of fish observed during the previous period, generates reasonable expectations that at the end of the extraordinary period, fish will slowly recover their previous reproductive activity.

Downloads

Download data is not yet available.

References

Agostinho, A. A.; Gomes, L. C.; Veríssimo, S. y Okada, E. K., 2004. Flood regime, dam regulation and fish in the Upper Paraná River: effects on assemblage attributes, reproduction and recruitment. En: Reviews in Fish Biology and Fisheries, 14(1), pp. 11–19. DOI: https://doi.org/10.1007/s11160-004-3551-y

Alves, J. C.; Andreotti, G. F.; Agostinho A. A. y Gomes, L., 2021. Effects of the El Nino Southern Oscillation (ENSO) on fish assemblages in a Neotropical floodplain. En: Hydrobiologia, 848, pp. 1811–1823.

Bartram, J., 1999. The World Health Organization in Europe and its role in water and health. En: Environmentalist, 19(1), pp. 17–22. DOI: https://doi.org/10.1023/A:1006528704346

Benayache, N.Y.; Nguyen Quang, T.; Hushchyna, K.; McLellan, K.;Afri- Mehennaoui, F. Z. y Bouaïcha, N., 2019. An overview of cyanobacteria harmful algal bloom (CyanoHAB) issues in freshwater ecosystems. En: Gökçe, Didem, ed. Limnology - some new aspects of inland water ecology. DOI: 10.5772/intechopen.84155

Beron, L., 1990. Features of the limnological behavior of Salto Grande’s reservoir (Argentina-Uruguay). En: Ecological Modeling, 52, pp. 87–102.

Boltovskoy, D.; Bordet, F.; Leites, V.y Cataldo D., 2021. Multiannual trends (2004–2019) in the abundance of larvae of the invasive mussel Limnopernafortunei and crustacean zooplankton in a large South American reservoir. En: Austral Ecology, 46(8), pp. 1221-1235. DOI: https://doi.org/10.1111/aec.13058

Boltovskoy, D.; Correa, N.; Bordet, F.;Leites, V. y Cataldo, D., 2013. Toxic Microcystis (cyanobacteria) inhibit recruitment of the bloomenhancing invasive bivalve Limnopernafortunei. En: Freshwater Biology, 58(9), pp. 1968–1981. DOI: https://doi.org/10.1111/fwb.12184

Bonetto, A. A.; Canon Verón, M. y Roldán, D., 1981. Nuevos aportes al conocimiento de las migraciones de peces en el río Paraná. En: ECOSUR,16(8), pp. 29-40.

Bordet, F.; Fontanarrosa, M. S. y O’Farrell, I., 2017. Influence of light and mixing regime on bloom-forming phytoplankton in a subtropical reservoir. En: River Research and Applications, 33(8), pp. 1315–1326. DOI: https://doi.org/10.1002/rra.3189.

Bordet, F.; Collazos, G.; Irigoyen, M.; Simón, C.; Andrade, S. y Vidal, M., 2023.Incidencia de la ausencia de eventos hidrológicos sobre las floraciones de cianobacterias en el Embalse de Salto Grande. En: Universidad de Buenos Aires. IV Congreso Iberoamericano de Limnología y X Congreso Argentino de Limnología: Comprender, proteger y recuperar con equidad las aguas del siglo XXI. Buenos Aires, Argentina (31 de julio - 4 de agosto de 2023). Buenos Aires: UBA.

Borús, Juan; Giordano, Leandro; Vita Sánchez, Maximiliano; Núñez, Víctor; Contreras, Guillermo y Pereira Andrea, 2021. Posibles escenarios hidrológicos en la Cuenca del Plata durante el periodo diciembre 2021 / enero-febrero 2022 [En línea]. Buenos Aires: Ministerio de Obras Públicas. [Consulta: 08 de diciembre de 2021]. Disponible en: https://www.ina.gov.ar/archivos/alerta/Escenario2021_Diciembre.pdf

Camacho Guerreiro, A. I.; Amadio, S. A.; Fabre, N. N. y da Silva Batista, V., 2021. Exploring the effect of strong hydrological droughts and floods on populational parameters of Semaprochilodus insignis (Actinopterygii: Prochilodontidae) from the Central Amazonia. En: Environment, Development and Sustainability, 23, pp. 3338–3348.

Camilloni, I. y Barros V., 2000. The Parana River response to El Niño 1982–83 and 1997–98 events. En: Journal of Hydrometeorology,1, pp. 412–430.

Carolsfeld, J.; Harvey, B.; Ross, C. y Baer, A., 2004. Migratory fish of South America: biology, fisheries and conservation status [En línea]. Ottawa: International Development Research Centre y World Bank. [Consulta: 11 de marzo de 2022]. Disponible en: http://hdl.handle.net/10986/14929

Cataldo, D.; Leites, V.; Bordet, F. y Paolucci, E., 2022. Effects of El NiñoSouthern Oscillation (ENSO) on the reproduction of migratory fishes in a large South American reservoir. En: Hydrobiologia, 849(15), pp. 3259-3274. DOI: https://doi.org/10.1007/s10750-022-04941-6

Cataldo, D. y Paolucci, E., 2022. Estudios ambientales: análisis genéticos de muestras de larvas de peces (OC 7791). Informe técnico. Convenio entre Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y la Comisión Técnica Mixta de Salto Grande. Informe final. (Informe inédito). CONICET y CTMSG.

Cataldo, D., 2015. Trophic relationships of Limnoperna fortunei with adult fishes. En: Boltovskoy, D., ed. Limnopernafortunei: the ecology, distribution and control of a swiftly spreading invasive fouling mussel. Cham: Springer International Publishing. pp. 231-248. ISBN: 978-3-319-13493-2.

Cataldo, D.; Gattás, F.; Leites, V.; Bordet, F. y Paolucci, E., 2020. Impact of a hydroelectric power plant on migratory fishes in the Uruguay river. En: River Research and Applications, 36(8), pp. 1598-1611. DOI: https://doi.org/10.1002/rra.3670

Chalar, G., 2006. Eutrophications dynamics on different temporary scales: Salto Grande Reservoir (Argentina-Uruguay). En: Tundisi, J. G., T. MatsumuraTundisi y C. S. Galli (eds). Eutrofizaçãona América do Sul: causas, consequencias e tecnologias de gerenciamento e controle. Instituto Internacional de Ecología e Gerenciamento Ambiental. [s.l.]: Academia Brasileira de Ciencias, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Inter Academy Panel on International Issues, Inter American Network of Academies of Sciences. pp. 87–101.

Chalar, G.; De Leon L.; Brugnoli E.; Clemente J. y Paradiso M., 2002. Antecedentes y nuevos aportes al conocimiento de la estructura y dinámica del Embalse Salto Grande. En: Fernández-Cirelli, A. C. G., ed. El agua en Sudamérica: de la limnologia a la gestión en Sudamérica. Buenos Aires: Editorial Eudeba. pp. 123–142.

Chorus, I. y Bartram, J.,1999. Toxic cyanobacteria in water: a guide to their public health consequences monitoring and management. Boca Raton: Taylor y Francis Group. ISBN: 0-419-23930-8

Chorus, I. y Welker, M., 2021. Toxic cyanobacteria in water. 2a ed. Boca Raton: CRC Press. ISBN: 978-1-003-08144-9

Comisión Argentina-Paraguaya del río Paraná, 1994. La fauna íctica del río Paraná, tramo Argentino-Paraguayo. [s.l.]: COMIP. ISBN: 987-99076-1-2.

De León, L. y Chalar G., 2003. Abundancia y diversidad del fitoplancton en el Embalse de Salto Grande (Argentina– Uruguay). Ciclo estacional y distribución espacial. En: Limnetica, 22, pp. 103–113.

Delfino, R. yBaigún, C., 1985. Marcaciones de peces en el Embalse Salto Grande, Río Uruguay (Argentina - Uruguay). En: Rev. Asoc. Cienc. Nat. Litoral, 16(1), pp. 85-93.

De Resende, E. K., 2004. Migratory fishes of the Paraguay-Paraná basin excluding the upper Paraná basin. En: Carolsfeld, J.; Harvey, B.; Ross, C. y Baer, A. ed. Migratory fish of South America: Biology, fisheries and conservation status. [s.l.]: World Fisheries Trust, World Bank, IDRC. pp. 99-156. ISBN: 0-9683958-2-12

Di Rienzo, J. A.; Casanoves, F.; Balzarini, M. G.; Gonzalez, L.; Tablada, M. y Robledo, C. W., 2020. InfoStat [En línea]. Versión 2020. Córdoba: Universidad Nacional de Córdoba. [Consulta: 20 de febrero de 2023]. Disponible en: http://www.infostat.com.ar

Fabré, N.; Castello, L.; Isaac, V. J. yVandick, S. B., 2017. Fishing and drought effects on fish assemblages of the central Amazon Basin. En: Fisheries Research, 188, pp. 157–165.

Ferrari, G. M., 2020. El caudal y la temperatura del agua son los principales factores que regulan el fitoplancton y las floraciones de cianobacterias en un gran río subtropical. En: INNOTEC, (20), pp. 30–66. DOI: https://doi.org/10.26461/20.07

Fuentes, C. M. y Espinach Ros, A., 1998. Variación de la actividad reproductiva del sábalo, Prochiloduslineatus (Valenciennes, 1847), estimada por el flujo de larvas en el río Paraná Inferior. En: Natura Neotropicalis, 29, pp. 25-32.

Fuentes, C. M.;Brow, D. y Paolucci, E. M., 2003. Reproducción del sábalo (Prochiloduslineatus-Valenciennes, 1847) y otras especies de interés comercial y deportivo en el río Uruguay inferior, estimada por la abundancia de estadios larvales en la deriva. [s.l.]: INIDEP. (Informe Técnico N° 80/03)

Fuentes, C. M.; Gómez, M. I.; Brown, D. R.; Arcelus, A. y EspinachRos, A., 2016. Downstream passage of fish larvae at the Salto Grande dam on the Uruguay River. En: River Res. Applic., 32. pp. 1879–1889. DOI: 10.1002/rra.3030.

García, C. Z. y Martínez, C. B. R., 2012. Biochemical and genetic alterations in the freshwater neotropical fish Prochiloduslineatus after acute exposure to Microcystis aeruginosa. En: Neotropical Ichthyology, 10, pp. 613–622.

Huang, B.; Thorne P. W.; Banzon V. F.; Boyer, T.; Chepurin, G.; Lawrimore, J. H.; Menne M. J.; Smith, T. M.; Vose R. S. y Zhang, H. M., 2017. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. En: Journal of Climate, 30, pp. 8179–8205.

Humphries, P. y Lake, P. S., 2000. Fish larvae and management of regulated rivers. En: Regulated Rivers Research & Management, 16, pp. 421-432.

King, A. J.; Humphries, P. y Lake, P. S., 2003. Fish recruitment on floodplains: the roles of patterns of flooding and life history characteristics. En: Canadian Journal of Fisheries and Aquatic Sciences, 60(7), pp. 773–786. DOI: https://doi.org/10.1139/f03‐057

Kruk, C.; Segura, A.; Piñeiro, G.; Baldassini, P.; Pérez-Becoña, L.; García-Rodríguez, F.; Perera, G. y Piccini, C., 2023. Rise of toxic cyanobacterial blooms is promoted by agricultural intensification in the basin of a large subtropical river of South America. En: Global Change Biology, 29, pp. 1774-1790. DOI: https://doi.org/10.1111/gcb.16587

Menni, R. C., 2004. Peces y ambientes en la Argentina continental. Vol. 5. Buenos Aires: Museo Argentino de Ciencias Naturales. ISSN: 1515-7652.

Mitsoura, A.; Kagalou, I.; Papaioannou, N.; Berillis, P.; Mente, E. y Papadimitriou, T., 2013. The presence of microcystins in fish Cyprinus carpio tissues. A histopathological study. En: International Aquatic Research, 5(1), pp. 1-8. DOI: https://doi.org/10.1186/2008-6970-5-8

Mol, J. H. D.; Resida, J. S.; Ramlal y Becker, C. R., 2000. Effects of El Niño-related drought on freshwater and brackish-water fishes in Suriname, South America. En: Environmental Biology of Fishes, 59, pp. 429–440.

Muñiz Saavedra, J. y Piacentino, G., 1991. Estudio del desarrollo ontogénico de Odontesthesbonariensis (Cuvier y Valenciennes 1835). En: Medio Ambiente, 11, pp. 61-68.

Nakatani, K.; Agostinho, A. A.; Baumgartner, G.; Bialetzki, A.; Sanches, P. V.; Cavicchioli-Makrakis, M. y Pavanelli, C. S., 2001. Ovos e larvas de peixes de água doce: desenvolvimento e manual de identificação. Maringá: EDUEM. ISBN: 85-85545-73-9

NOAA, 2021. Climate Prediction Center. Maryland: NOAA. [Consulta 3 de mayo de 2021]. Disponible en: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php

O’Farrell, I.; Bordet, F. y Chaparro, G., 2012. Bloom forming cyanobacterial complexes co-ocurring in a subtropical large reservoir: validation of dominant eco-strategies. En: Hydrobiologia, 698(1), pp. 175-190. DOI: 10.1007/s10750-012-1102-4

Osswald, J.; Rellán, S.; Gago, A. y Vasconcelos, V., 2007. Toxicology and detection methods of the alkaloid neurotoxin produced by cyanobacteria, anatoxin-a. En: Environment International, 33(8), pp. 1070–1089. DOI: https://doi.org/10.1016/j.envint.2007.06.003

Paolucci, E. M. y Thuesen, E. V., 2015. Trophic relationships of Limnopernafortunei with larval fishes. En: Boltovskoy, D., ed. Limnopernafortunei: the ecology, distribution and control of a swiftly spreading invasive fouling mussel. Cham: Springer International Publishing. pp. 211-229. ISBN: 978-3-319-13493-2.

Paolucci, E. M.; Leites, V.; Cataldo, D. H. y Boltovskoy, D., 2017. Veligers of the invasive bivalve Limnopernafortunei in the diet of indigenous fish larvae in a eutrophic subtropical reservoir. En: Austral Ecology, 42(7), pp. 759–771. DOI: https://doi.org/10.1111/aec.12493

Penalba, O.C. y Vargas, W.M., 2008. Variability of low monthly rainfall in La Plata Basin. En: Met. Apps, 15, pp. 313-323. DOI: https://doi.org/10.1002/met.68

Quirós, R. y Luchini, L., 1983. Características limnológicas del embalse de Salto Grande III: Fitoplancton y su relación con parámetros ambientales. En: Revista de la Asociación de Ciencias Naturales del Litoral, 13, pp. 19–66.

Rangel, L. M.; Silva, L. H. S.; Rosa, P.; Roland, F. y Huszar, V. L. M., 2012. Phytoplankton is mainly controlled by hydrology and phosphorus concentrations intropicalhydroelectric reservoirs. En: Hydrobiologia, 693, pp. 13–28. DOI: 10.1007/s10750-012-1083-3

Reynalte-Tataje, D.A.; Agostinho, A.A.; Bialetzki, A.; Hermes-Silva, S.; Fernandes, R. Zaniboni-Filho, E., 2012. Spatial and temporal variation of the ichthyoplankton in a subtropical river in Brazil. En: Environ Biol Fish., 94, pp. 403–419. DOI: https://doi.org/10.1007/s10641-011-9955-3

Reynolds, C. S.y Jaworski, G. H. M., 1978. Enumeration of natural Microcystis populations. En: British Phycological Journal, 13(3), pp. 269–277. DOI: https://doi.org/10.1080/00071617800650331

Rodríguez, M. A. y Lewis, W. M., 1997. Structure of fish assemblages along environmental gradients in floodplain lakes of the Orinoco River. En: EcologicalMonographs, 67, pp. 109–128.

Saurral, R. I.; Barros, V. R. y Lettenmaier, D. P., 2008. Land use impact on the Uruguay River discharge. En: Geophys. Res. Lett., 35, pp. 215-235. DOI: 10.1029/2008GL033707.

Smolders, A. J. P.; Van Der Velde, G. y Roelofs, J. G. M., 2000. El Nino caused collapse of the sábalo fishery (Prochiloduslineatus, Pisces: Prochilodontidae) in a South American river. En: Naturwissenschaften, 87, pp. 30–32. DOI: 10.1007/s001140050004

Sverlij, S. B.; Espinach Ros, A. y Orti, G., 1993. Sinopsis de los datos biológicos y pesqueros del sábalo Prochiloduslineatus (Valenciennes, 1847). En: Sinopsis Sobre La Pesca, 154. ISBN: 9253033711

Turesson, H. y Bronmark, C., 2007. Predator-prey encounter rates in freshwater piscivores: effects of prey density and water transparency. En: Oecologia, 153, pp. 281–290. DOI: 10.1007/s00442-007-0728-9

Utermöhl, H., 1958. Zur Vervollkommung der quantitativen Phytoplankton Methodik. En: Mitteilungen der Internationalen Vereinigung der Theoretischen und Angewandten Limnologie, 9, pp. 1–38.

Venrick, E. L., 1978. How many cells to count? En: Sournia, A., ed. Phytoplankton manual. Paris: UNESCO Press. pp. 167–168. ISBN: 92-3-101572-9.

Villar, C. A. y Bonetto, C., 2000. Chemistry and nutrient concentrations of the Lower Paraná River and its floodplain marshes during extreme flooding. En: Archiv fur Hydrobiologie, 148(3), pp. 461-479.

Welcomme, R. L., 1979. Fisheries ecology of floodplain rivers. London: Longman. ISBN: 9780582463103, 0582463106

Welcomme, R. L., 1985. River fisheries. Roma: FAO. (FAO Fish. Tech. Pap. No. 262). ISBN: 92-5-102299-2

Zaniboni, Z. y Schulz, U. H., 2004. Migratory fishes of the Uruguay River. En: Carolsfeld, J.; Harvey, B., Ross, C. y Baer, A., eds. Migratory fishes of South America: biology, fisheries, and conservation status. Washington: World Fisheries Trust, World Bank, IDRC. ISBN: 0-9683958-2-12. pp. 157–194

Published

2024-06-14

How to Cite

Cataldo, D., Bordet, F., & Bruno, L. (2024). Effect of extreme low water levels 2020-2023 on the reproduction of migratory fish in the Uruguay River. INNOTEC, (27 ene-jun), e653. https://doi.org/10.26461/27.04

Issue

Section

Articles

Most read articles by the same author(s)