Antifouling paints derived from terrestrial plants

a safe solution for the environment in the control of biofouling

Authors

  • Vanessa Ochi Agostini Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática – Programa de Pós-Graduação em Oceanologia – Instituto de Oceanografia – Universidade Federal do Rio Grande, Rio Grande do Sul, Brasil https://orcid.org/0000-0002-8325-254X
  • Grasiela Lopes Leães Pinho Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática – Programa de Pós-Graduação em Oceanologia – Instituto de Oceanografia – Universidade Federal do Rio Grande, Rio Grande do Sul, Brasil https://orcid.org/0000-0001-7951-0334
  • Erik Muxagata Laboratório de Zooplâncton – Programa de Pós-Graduação em Oceanografia Biológica – Instituto de Oceanografia – Universidade Federal do Rio Grande, Rio Grande do Sul, Brasil http://orcid.org/0000-0002-4210-5252
  • Alexandre José Macedo Laboratório de Biofilmes e Diversidade Bacteriana – Centro de Biotecnologia – Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brasil https://orcid.org/0000-0002-8951-4029
  • Fabiana Rey Bentos Latitud–Fundación LATU, Uruguay https://orcid.org/0000-0001-5931-5902
  • Lucía Boccardi Latitud – Fundación LATU, Uruguay https://orcid.org/0000-0002-5391-2308
  • María Jesús Dabezies Laboratorio Tecnológico del Uruguay (LATU), Uruguay https://orcid.org/0000-0001-9909-3427
  • Ernesto Brugnoli Oliveira Oceanografía y Ecología Marina, Facultad de Ciencias, Universidad de la República, Uruguay https://orcid.org/0000-0001-7304-1856

DOI:

https://doi.org/10.26461/22.01

Keywords:

natural product, natural extract, phytochemical, invertebrates, mussel

Abstract

Invertebrates (e.g, barnacles, mussels) are usually the main responsibles for the industrial and naval high economic costs of biofouling, aggravated by colonization of invasive species such (e.g., golden mussel, Limnoperna fortunei). Many strategies have been used as attempts to control biofouling. However, these are not efficient or cause high mortality of aquatic organisms, including the antifouling coatings. Currently, with the aim of preserving human and environmental health, new studies have focused on the discovery of new natural agents to replace the toxic synthetic molecules in paints. The study of bioactive natural products from terrestrial plants has been a promising option in the clinical field and they can have the same potential in the aquatic field. In this way, the main question of this study is: How to select the most promising extracts and compounds? This review evaluated the documents published on this topic, with the aim of highlighting the information necessary to focus antifouling investigations derived from terrestrial plants. A total of 29 papers were examined in this review from 1990 to 2020. Natural products derived from terrestrial plants have great potential as sustainable antifouling, inhibiting colonization of micro and macrofouling. Alkaloid and flavonoid compounds from the Zingiberaceae, Myrtaceae and Fagaceae families have already shown promising results against mussels.

Downloads

Download data is not yet available.

References

Agostini, V.O., Ritter, M.N., Macedo, A.J. Muxagata, E. y Erthal, F., 2017. What determines sclerobiont colonization on marine mollusk shells? En: PLoS ONE, 12, e0184745. https://doi.org/10.1371/journal.pone.0184745

Agostini, V.O., Macedo, A.J. y Muxagata, E., 2018. O papel do biofilme bacteriano no acoplamento bento-pelágico, durante o processo de bioincrustação. En: Revista Liberato, 19(31), pp.1–134. https://doi.org/10.31514/rliberato.2018v19n31.p23

Agostini, V.O., Macedo, A.J. Muxagata, E. Silva, M.V.da y Pinho, G.L.L., 2019. Natural and non-toxic products from Fabaceae Brazilian plants as a replacement for traditional antifouling biocides: an inhibition potential against initial biofouling. En: Environmental Science and Pollution Research, 26, pp.27112–27127 https://doi.org/10.1007/s11356-019-05744-4

Agostini, V.O., Macedo, A.J. Muxagata, E. Silva, M.V.da y Pinho, G.L.L., 2020. Non-toxic antifouling potential of Caatinga plant extracts: effective inhibition of marine initial biofouling. En: Hydrobiologia, 847, pp.45–60. https://doi.org/10.1007/s10750-019-04071-6

Amara, I., Miled, W., Slama, R.B. y Ladhari, N., 2018. Antifouling processes and toxicity effects of antifouling paints on marine environment. A review. En: Environmental Toxicology and Pharmacology, 57, pp.115–130. https://doi.org/10.1016/j.etap.2017.12.001

Angarano, M-B., McMahon, R.F., Hawkins, D.L. y Schetz, J.A., 2007. Exploration of structure-antifouling relationships of capsaicin-like compounds that inhibit zebra mussel (Dreissena polymorpha) macrofouling. Biofouling: En: The Journal of Bioadhesion and Biofilm Research, 23(5), pp.295-305. https://doi.org/10.1080/08927010701371439

Agra, M.F., Freitas, P.F. y Barbosa-Filho, J.M., 2007. Synopsis of the plants known as medicinal and poisonous in Northeast of Brazil. En: Brazilian Journal of Pharmacognosy, 17, pp.114-140. https://doi.org/10.1590/S0102-695X2007000100021

Appezzato-da-Glória, B. y Carmello-Guerreiro, S.M., 2006. Anatomia vegetal. 2a ed. Viçosa: Editora UFV. 430 p.

Azis, P.K.A., Al-Tisan, I. y Sasikumar, N., 2001.Biofouling potential and environmental factors of seawater at a desalination plant intake. En: Desalination, 135, pp.69–82. https://doi.org/10.1016/S0011-9164(01)00140-0

Bellotti, N., Amo, B. y Romagnoli, R., 2014. Assessment of tannin antifouling coatings by scanning electronmicroscopy. En: Progress in Organic Coatings, 77, pp.1400–1407. https://doi.org/10.1016/j.porgcoat.2014.05.004

Bogdan, S., Deya, C., Micheloni, O., Bellotti, N. y Romagnoli, R. Natural products to control biofilm on painted surfaces. En: Pigment & Resin Technology, 47(2), pp.180-187. https://doi.org/10.1108/PRT-01-2017-0004

Boltovskoy, D. y Correa, C., 2015. Ecosystem impacts of the invasive bivalve Limnopernafortunei (golden mussel) in South America. En: Hydrobiologia, 746, pp.81–95. https://doi.org/10.1007/s10750-014-1882-9

Boy, H.I.A, Rutilla, A.J.H., Santos, K.A., Ty, A.M.T., Yu, A.I., Mahboob, T., Tangpoong, J. y Nissapatorn, V., 2018. Recommended medicinal plants as source of natural products: a review. En: Digital Chinese Medicine, 1(2), pp.131-142. https://doi.org/10.1016/S2589-3777(19)30018-7

Breitig, G., 1965. The use of ultrasound in the eradication of larvae. Greiswald: University Greiswald. (Tesis de doctorado).

Buchanan, R.B., Gruissem, W. y Jones, R.L., 2000. Biochemistry and molecular biology of plants. Rockville: American Society of Plant Physiologists. 1280 p.

Cabral, R.S., Sartori, M.C., Cordeiro, I., Queiroga, C.L., Eberlin, M.N., Lago, J.H.G., Moreno, P.R.H. y Young, M.C.M., 2012. Anticholinesterase activity evaluation of alkaloids and coumarin from the stems of Conchocarpusfontanesianus. En: Brazilian Journal of Pharmacognosy, 22(2), pp.374-380. https://doi.org/10.1590/S0102-695X2011005000219

Cho, J.Y., Kwon, E.-H., Choi, J.-S., Hong, S.-Y., Shin, H.-W. y Hong, Y.-K., 2001. Antifouling activity of seaweed extracts on the green alga Enteromorpha prolifera and the mussel Mytilus edulis. En: Journal of Applied Phycology, 13(2), pp.117–125. https://doi.org/10.1023/A:1011139910212

Clasen, A. y Kesel, A.B., 2019. Microstructural surface properties of drifting seeds—a model for non-toxic antifouling solutions. En: Biomimetics, 4, 37. https://doi.org/10.3390/biomimetics4020037

Cordell, G., 1981. Introduction to alkaloids: a biogenetic approach. Nueva York: Wiley and Sons. 1055 pp.

Correia, S.de J., David, J.P. y David, J.M., 2006. Metabólitos secundários de espécies de Anacardiaceae. En: Quimica Nova, 6, pp.1287-1300. https://doi.org/10.1590/S0100-40422006000600026

Cseke, L.J., Kirakosyan, A., Kaufman, P.B., Warber, S.L., Duke, J.A., Brielmann, H.L., 2006. Natural products from plants. 2ª ed. Boca Ratón: CRC Press. 569 p.

Cui, Y.T., Teo, S.L.M., Leong, W. y Chai, C.L.L., 2014. Searching for “Environmentally-Benign” antifouling biocides. En: International Journal of Molecular Sciences, 15, pp.9255-9284. https://doi.org/10.3390/ijms15069255

Dahms, H.U. y Dobretsov, S., 2017. Antifouling compounds from marine macroalgae. En: Marine Drugs, 15(9), pp.265. https://doi.org/10.3390/md15090265

Desai, D.V., 2008. Impact of Irgarol 1051 on the larval development and metamorphosis of Balanus amphitrite Darwin, the diatom Amphora coffeaformis and natural biofilm. En: Biofouling: The Journal of Bioadhesion and Biofilm Research, 24(5), pp.393–403. https://doi.org/10.1080/08927010802339764

Devi, P., Solimabi, W., D’Souza, L., Sonak, S., Kamat, S.Y. y Singbai, S.Y.S., 1997. Screening of some marine plants for activity against marine fouling bacteria. En: Botanica Marina, 40, pp.87–91. https://doi.org/10.1515/botm.1997.40.1-6.87

Di Stasi, L.C. y Hiruma-Lima, C.A., 2002. Plantas medicinais na Amazônia e na Mata Atlântica. 2. San Pablo: São Paulo. 608 p.

Dobretsov, S. y Rittschof, D., 2020. Love at first taste: induction of larval settlement by marine microbes. En: International Journal of Molecular Sciences, 21(3), pp.731.https://doi.org/10.3390/ijms21030731

Ekiert, H. y Kisiel, W., 1997. Coumarins and alkaloids in shoot culture of Ruta graveolens. En: Acta Societatis Botanicorum Poloniae, 66(3-4), pp.329-332. https://doi.org/10.5586/asbp.1997.039

Etoh, H., Kondoh, T., Noda, R., Singh, I.P., Sekiwa, Y., Morimitsu, K. y Kubota, K., 2002. Shogaols from Zingiber officinale as Promising Antifouling Agents. En: Bioscience, Biotechnology, and Biochemistry, 66(8), pp.1748-1750. https://doi.org/10.1271/bbb.66.1748

Feng, D.Q., Ke, C.H., Lu, C.Y. y Li, S.J., 2009. Herbal plants as a promising source of natural antifoulants: evidence from barnacle settlement inhibition. En: Biofouling: The Journal of Bioadhesion and Biofilm Research, 25(3), pp.181-190, https://doi.org/10.1080/08927010802669210

Feng, D.Q., He, J., Chen, S.Y., Su, P., Ke, P.H. y Wang, W., 2018. The plant alkaloid camptothecin as a novel antifouling compound for marine paints: laboratory bioassays and field Trials. En: Marine Biotechnology, 20(5), pp.623-638. https://doi.org/10.1007/s10126-018-9834-4

Fernández-Niño M, e Islam Z., 2017.The potential of synthetic biology for improving environmental quality and human health in developing countries. En: Salud UIS, 49(1), pp.10 p.

Freckelton, M.-L., Nedved, B.T. y Hadfield, M.G., 2017. Induction of invertebrate larval settlement; different bacteria, different mechanisms? En: Scientific Reports, 7, pp.42557. https://doi.org/10.1038/srep42557

Fujita, D.S., Takeda, A.M., Coutinho, R. y Fernandes, F.C., 2015. Influence of antifouling paint on freshwater invertebrates (Mytilidae, Chironomidae and Naididae): Density, richness and composition. En: Brazilian Journal of Biology, 75(4), suppl. 1, pp.S70-S78. https://doi.org/10.1590/1519-6984.05114

Giulietti, A.M., Harley, R.M., Queiroz, L.P., Wanderley, M.G. y Berg, C.V.B., 2005. Biodiversidade e conservação das plantas no Brasil [En línea]. En: Megadiversidade, 1, pp.52-60. [Consulta: abril de 2020]. Disponible en:http://www.agencia.cnptia.embrapa.br/Repositorio/BIOD_ConservacaoID-eWNPNpKEJw.pdf

Gopikrishnan, V., Radhakrishnan, M., Pazhanimurugan, R., Shanmugasundaram, T. y Balagurunathan, R., 2015. Bioprospecting of actinobacteria from mangrove and estuarine sediments for antifouling compounds [En línea]. En: Journal of Chemical and Pharmaceutical Research, 7(7), pp.1144–1153. [Consulta: abril de 2020]. Disponible en: https://www.researchgate.net/publication/287509924_Bioprospecting_of_marine_derived_actinomycetes_with_special_reference_to_antimycobacterial_activity

Goransson, U., Sjogren, M., Svangard, E., Claeson, P. y Bohlin, L., 2004. Reversible antifouling effect of the cyclotide cycloviolacin O2 against barnacles. En: Journal of Natural Products, 67, pp.1287–1290. https://doi.org/10.1021/np0499719

Gupta, R.S., 2000. The phylogeny of proteobacteria: relationships to other eubacterial phyla and eukaryotes. En: FEMS Microbiology Reviews, 24, pp.367–402. https://doi.org/10.1111/j.1574-6976.2000.tb00547.x

Hagerman, A.E. y Butler, L.G., 1989. Choosing appropriate methods and standards for assaying tannin [En línea]. En: Journal of Chemical Ecology, 15, pp.1795–1810. [Consulta: abril de 2020]. Disponible en: https://link.springer.com/article/10.1007/BF01012267

Hammer, Ø. y& Harper, D.A.T., 2006. Paleontological Data. PAST: Paleontological Statistics Software Package for Education and Data Analysis [En línea]. Version 2.17c. [s.l]: [s.n.]. [Consulta: abril de 2020]. Disponible en: http://priede.bf.lu.lv/ftp/pub/TIS/datu_analiize/PAST/2.17c/download.html

Huang, X-Z., Xu, Y., Zhang, Y-F., Zhang, Y., Wong, H., Han, Z., Yin, Y. y Qian, P-Y., 2014. Nontoxic piperamides and their synthetic analogues as novel antifouling reagentes. En: Biofouling: The Journal of Bioadhesion and Biofilm Research, 30(4), pp.473-481. https://doi.org/10.1080/08927014.2014.889688

Holtum, R.E., 1950. The Zingiberaceae of the Malay peninsula. En: The Gardens' Bulletin, Singapore, 13(4), pp.1-50.

Jenkins, S.R. y Martins, G.M., 2010. Succession on hard substrata. En: Durr, S. y Thomason, J.C., eds. Biofouling. Oxford: Wiley. 456 p.

Karasawa, M.M.G. y Mohan, C., 2018. Fruits as prospective reserves of bioactive compounds: a review. En: Natural Products and Bioprospecting, 8, pp.335–346. https://doi.org/10.1007/s13659-018-0186-6

Katsuyama, I., Satuito, C.G., Maeda, T., Oonishi, M. yKumagai, T., 2005. The effect of DC-pulse electric stimulus on the swimming behavior of larvae of the freshwater mussel Limnopernafortuneiin flowing water within a pipe. En: Sessile Organisms, 2, pp.1–5. https://doi.org/10.4282/sosj.22.1

Kothari, V. y Seshadri, S., 2010. Antioxidant activity of seed extracts of Annona squamosa and Carica papaya. En: Nutrition & Food Science, 40(4), pp.403-408. https://doi.org/10.1108/00346651011062050

Konstantinou, I.K. y Albanis, T.A., 2004. Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review. En: Environment International, 30, pp.235–248. https://doi.org/10.1016/S0160-4120(03)00176-4

Leary, D.H., Li, R.W., Hamdan, L.J., Hervey, I.V.W.J., Lebedev, N., Wang, Z., Deschamps, J.R., Kusterbeck, A.W. y Vora, G.J., 2014. Integrated metagenomic and metaproteomic analyses of marine biofilm communities. En: Biofouling: The Journal of Bioadhesion and Biofilm Research, 30(10), pp.1211–1223. https://doi.org/10.1080/08927014.2014.977267

Lee, J.W., Nam, J.H., Kim, Y.H., Lee, K.H. y Lee, D.H., 2008. Bacterial communities in the initial stage of marine biofilm formation on artificial surfaces. En: Journal of Microbiology, 46(2), pp.174–182. https://doi.org/10.1007/s12275-008-0032-3

Liu, R.H., 2004. Potential synergy of phytochemicals in cancer prevention: mechanism of action. En: The Journal of Nutrition, 134(12), pp.3479S–3485S. https://doi.org/10.1093/jn/134.12.3479S

Liu, Y., Shao, X., Huang, J. y Li, H., 2019. Flame sprayed environmentally friendly high-density polyethylene. En: Hydrobiologia, 847, pp.45–60. https://doi.org/10.1016/j.matlet.2018.11.144

Macedo, A.J. y Abraham, W.R., 2009. Can infectious biofilm be controlled by blocking bacterial communication? En: Journal of Medicinal Chemistry, 5(6), pp.517–528. https://doi.org/10.2174/157340609790170515

Malafaia, C.B., Jardelino, A.C.S., Silva, A.G.S., Souza, E.B., Macedo, A.J., Correia, M.T.S. y Silva, M.V., 2017. Effects of Caatinga plant extracts in planktonic growth and biofilm formation in Ralstonia solanacearum. En: Microbial Ecology, 75(3), pp.555–561. https://doi.org/10.1007/s00248-017-1073-0

Manilal, A., Sujith, S., Sabarathnam, B., Seghal Kiran, G., Selvin, J., Shakir, C. y Lipton, A.P., 2010. Antifouling potentials of seaweeds collected from the Southwest Coast of India [En línea]. En: World Journal of Agricultural Sciences, 6(3), pp.243–248. [Consulta: abril de 2020]. Disponible en: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.415.4820&rep=rep1&type=p

Maranhão, R.A. y Stori, N., 2019. Estratégias de gestão ambiental adotadas pelo setor elétrico para controle do Limnoperna fortunei [En línea]. En: Brazillian mJournal of Business, 1(4), pp.1605-1613. [Consulta: abril de 2020]. Disponible en: https://www.brazilianjournals.com/index.php/BJB/article/view/4223/0

Maréchal, J-F. y Hellio, C., 2009. Challenges for the development of new non-toxic antifouling challenges for the development of new nontoxic antifouling solutions. En: International Journal of Molecular Sciences, 10, pp.4623–4637. https://doi.org/10.3390/ijms10114623

Medeiros-Costa, J.T., 2002. As espécies de plameiras (Arecaceae) do Estado de Pernambuco, Brasil. En: Tabarelli, M. y Silva, J.M.C, orgs. Diagnostico da biodiversidade de Pernambuco. v.1. Recife: SECTMA & Massangana. pp.229-236

Moodie, L.W.K., Cervin, G., Trepos, R., Labriere, C., Hellio, C., Pavia, H. y Svenson, J., 2018. Design and biological evaluation of antifouling dihydrostilbene oxime hybrids. En: Marine Biotechnology, 20(2), pp.257–267. https://doi.org/10.1007/s10126-018-9802-z

Muthusamy, S., Lundin, D., Branca, R.M.M.M., Baltar, F., Gonzalez, J.M., Lehtio, J. y Pinhassi, J., 2017. Comparative proteomics reveals signature metabolisms of exponentially growing and stationary phase marine bacteria. En: Environmental Microbiology, 19(6), pp.2301–2319. https://doi.org/10.1111/1462-2920.13725

Nandakumar, K. y Yano, T., 2003. Biofouling and its prevention: a comprehensive overview. En: Biocontrol Science, 8(4), pp.133–144. https://doi.org/10.4265/bio.8.133

Nadir, I., Rana, N.F., Ahmad, N.M., Tanweer, T., Batool, A., Taimoor, Z., Riaz, S. y Ali, S.M., 2020. Cannabinoids and terpenes as an antibacterial and antibiofouling promotor for PES water filtration membranes. En: Molecules, 25(3), pp.691. https://doi.org/10.3390/molecules25030691

Nandhini, S. y Revathi, K., 2016. Antifouling activity of extracts from mangroves against biofouling bacteria isolated from boats in Royapuram, Chennai, India. En: International Journal of Current Microbiology and Applied Sciences, 5(8), pp.324-335. https://doi.org/10.20546/IJCMAS.2016.508.035

Omae, I., 2003. General aspects of tin-free antifouling paints. En: Chemical Reviews, 103, pp.3431–3448. https://doi.org/10.1021/cr030669z

Pancharoen, O., Prawat, U. y Tuntiwachwuttikul, P., 2000. Phytochemistry of the zingiberaceae. En: Studies in Natural Products Chemistry, 23, pp.797–865. https://doi.org/10.1016/s1572-5995(00)80142-8

Pell, S.K.; Mitchell, J.D., Miller, A.J. y Lobova, T.A., 2011. Anacardiaceae. En: KubtzkiI, K., ed. The families and genera of vascular plants. Flowering plants, Eudicots - Sapindales, Cucurbitales, Myrtaceae. V.10. Berlin: Springer Verlag. pp.7-50.

Pérez, M., García, M., Blustein, G. y Stupak, M., 2007. Tannin and tannate from the quebracho tree: an eco-friendly alternative for controlling marine biofouling. En: Biofouling: The Journal of Bioadhesion and Biofilm Research, 23(3), pp.151-159. https://doi.org/10.1080/08927010701189484

Pérez, M., García, M., Sánchez, M., Stupak, M., Mazzuca, M., Palermo, J.A. y Blustein, G., 2014. Effect of secochiliolide acid isolated from the Patagonian shrub Nardophyllumbryoides as active component in antifouling paints. En: International Biodeterioration & Biodegradation, 89, pp.37e44. https://doi.org/10.1016/j.ibiod.2014.01.009

Pichlmaier, M., Marwitz, V., Ku¨hn, C., Niehaus, M., Klein, G., Bara, C., Haverich, A. y Abraham, W.-R., 2008. High prevalence of asymptomatic bacterial colonization of rhythm management devices. En: Europace, 10, pp.1067–1072. https://doi.org/10.1093/europace/eun191

Prabhakaran, S., Rajaram, R., Balasubramanian, V. y Mathivanan, K., 2012. Antifouling potentials of extracts from seaweeds, seagrasses and mangroves against primary biofilmm forming bacteria. En: Asian Pacific Journal of Tropical Biomedicine, 2(1), pp.S316–S322. https://doi.org/10.1016/S2221-1691(12)60181-6

Qian, P-Y., Xu, Y. y Fusetani, N., 2010. Natural products as antifouling compounds: recente progress and future perspectives. En: Biofouling: The Journal of Bioadhesion and Biofilm Research, 26(2), pp.223-234. https://doi.org/10.1080/08927010903470815

Ralston, E. y Swain, G., 2009. Bioinspiration—the solution for biofouling control? En: Bioinspiration and Biomimetics, 4, pp.015007. https://doi.org/10.1088/1748-3182/4/1/015007

Raven, P.H., Evert, R.F. y Eichhorn, S.E., 1992. Biologiavegetal. 5a ed. Nueva York: Worth Publishers. 876 p.

Salta, M., Wharton, J.A., Dennington, S.P., Stoodley, P. y Stokes, K.R., 2013. Anti-biofilm performance of three natural products against initial bacterial attachment. En: International Journal of Molecular Sciences, 14(11), pp.21757–21780. https://doi.org/10.3390/ijms141121757

Sandjo, L.P., Kuete, V., Tchangna, R.S., Efferth, T. y Ngadjui, B.T., 2014. Cytotoxic Benzophenanthridine and Furoquinoline Alkaloids from Zanthoxylum buesgenii (Rutaceae). En: Chemistry Central Journal, 8(61), pp.4. https://doi.org/10.1186/s13065-014-0061-4

Santos, C.P., Vicenzi, J., Berutti, F.A., Mansur, M.C.D., Pérez Bergmann, C., Raya Rodriguez, M.T., Vilar Nehrke, M. y Leite Zurita, M.L., 2012. Controle de bivalves com a utilização do ultrassom. En: Mansur, M.C.D., Santos, C.P., Pereira, D., Padula, P.I.C., Leite, Z.M.L., Raya, R.M.T., Vilar, N.M. y Aydos, B.P.E., eds. Moluscos límnicos invasores no Brasil. Biologia, prevenção, controle. Porto Alegre: Redes Editora. pp.339–341.

Schultz, M.P., Bendick, J.A., Holm, E.R. y Hertel, W.M., 2011. Economic impact of biofouling on a naval surface ship. En: Biofouling: The Journal of Bioadhesion and Biofilm Research, 27(1), pp.87–98. https://doi.org/10.1080/08927014.2010.542809

Sichaem, J., Jirasirichote, A., Sapasuntikul, K., Khumkratok, S., Sawasdee, P., Do, T.M.L. y Tip-pyang, S., 2014. New furoquinoline alkaloids from the leaves of Evodia lepta. En: Fitoterapia, 92, pp.270-273. https://doi.org/10.1016/j.fitote.2013.12.002

Soroldoni, S., Abreu, F., Castro, I.B., Duarte, F.A. y Pinho, G.L.L., 2017. Are antifouling paint particles a continuous source of toxic chemicals to the marine environment? En: Journal of Hazardous Materials, 15(330), pp.76–82. https://doi.org/10.1016/j.jhazmat.2017.02.001

Stupak, M.E., García, M.T. y Pérez, M.C., 2003. Non-toxic alternative compounds for marine antifouling paints. En: International Biodeterioration & Biodegradation, 52, pp.49-52. https://doi.org/10.1016/S0964-8305(03)00035-0

Takasawa, R., Etoh, H., Yagi, A., Sakata, K. e Ina, K., 1990. Nonylphenols as promising antifouling agents found by a simple bioassay method using the blue mussel, Mytilus edulis. En: Agricultural and Biological Chemistry, 54(6), pp.1607-1610. https://doi.org/10.1080/00021369.1990.10870144

Teixeira, V.L, 2010. Caracterização do estado da arte em biotecnologia marinha no Brasil [En línea]. Brasilia: Ministério da Saúde, Organização Pan-Americana da Saúde. Ministério da Ciência e Tecnologia. (Série B. Textos Básicos de Saúde). 134p. [Consulta: abril de 2020]. Disponible en: http://www.terrabrasilis.org.br/ecotecadigital/index.php/estantes/pesquisa/1731-caracterizacao-do-estado-da-arte-em-biotecnologia-marinha-no-brasil

Telegdi, J., Trif, L. y Romanszki, L., 2016. Smart anti-biofouling composite coatings for naval applications. En: Montemor, M.F., ed. Transport, structural, environmental and energy applications. Cambridge: Elsevier. (Woodhead Publishing Series in Composites Science and Engineering). https://doi.org/10.1016/B978-1-78242-283-9.00005-1

Trentin, D.S., Giordani, R.B., Zimmer, K.R., Silva, A.G., Silva, M.V., Correia, M.T.S., Baumvol, I.J.R. y Macedo, A.J., 2011. Potential of medicinal plants from the Brazilian semi-arid region (Caatinga) against Staphylococcus epidermidis planktonic and biofilm lifestyles. En: Journal of Ethnopharmacology, 137, pp.327–335. https://doi.org/10.1016/j.jep.2011.05.030

Uliano-Silva, M., Dondero, F., Dan Otto, T., Costa, I., Lima, N.C.B., Americo, J.A., Mazzoni, C.J., Prosdocimi, F. y Rebelo, M.F., 2018. A hybrid-hierarchical genome assembly strategy to sequence the invasive golden mussel, Limnopernafortunei. En: Giga Science, 7. https://doi.org/10.1093/gigascience/gix128

WHOI, Woods Hole Oceanographic Institution, 1952. Marine fouling and its prevention [En linea]. Annapolis: US Naval Institute. [Consulta: abril de 2020]. Disponible en: https://darchive.mblwhoilibrary.org/handle/1912/191

Williams, C.A. y Grayer, R.J., 2004. Anthocyanins and other flavonoids. En: Natural Product Reports, 21, pp.539–573. https://doi.org/10.1039/b311404j

Xu, Q., Barrios, C.A., Cutright, T. y Newby, B.Z., 2005. Evaluation of toxicity of capsaicin and zosteric acid and their potential application as antifoulants. En: Environmental Toxicology, 20(5), pp.467-74. https://doi.org/10.1002/tox.20134

Zhou, X., Zhang, Z., Xu, Y., Jin, C., He, H., Hao, X. y Qian, P.-Y., 2009. Flavone and isoflavone derivatives of terrestrial plants as larval settlement inhibitors of the barnacle Balanus amphitrite. En: Biofouling: The Journal of Bioadhesion and Biofilm Research, 25(1), pp.69–76. https://doi.org/10.1080/08927010802455941

Published

2021-04-08

How to Cite

Ochi Agostini, V., Lopes Leães Pinho, G., Muxagata, E., Macedo, A. J., Rey Bentos, F., Boccardi, L., Dabezies, M. J., & Brugnoli Oliveira, E. (2021). Antifouling paints derived from terrestrial plants: a safe solution for the environment in the control of biofouling. INNOTEC, (22 jul-dic), e559. https://doi.org/10.26461/22.01

Issue

Section

Reviews

Most read articles by the same author(s)