Tecnofuncionalidad de harinas integrales de maíces andinos (Zea Mays) nativas y extrudidas

Autores/as

  • Rita Marisol Miranda Centro Interdisciplinario de Investigaciones en Tecnologías y Desarrollo Social para el NOA (CIITeD)-CONICET. Facultad de Ingeniería, Universidad Nacional de Jujuy, San Salvador de Jujuy, Argentina https://orcid.org/0000-0002-3966-7457
  • Natalia Ester Domínguez Centro Interdisciplinario de Investigaciones en Tecnologías y Desarrollo Social para el NOA (CIITeD)-CONICET. Facultad de Ingeniería, Universidad Nacional de Jujuy, San Salvador de Jujuy, Argentina https://orcid.org/0000-0002-9689-2984
  • María Alejandra Giménez Centro Interdisciplinario de Investigaciones en Tecnologías y Desarrollo Social para el NOA (CIITeD)-CONICET. Facultad de Ingeniería, Universidad Nacional de Jujuy, San Salvador de Jujuy, Argentina https://orcid.org/0000-0003-2367-836X
  • Manuel Oscar Lobo Centro Interdisciplinario de Investigaciones en Tecnologías y Desarrollo Social para el NOA (CIITeD)-CONICET. Facultad de Ingeniería, Universidad Nacional de Jujuy, San Salvador de Jujuy, Argentina https://orcid.org/0000-0003-0646-0940
  • Norma Cristina Sammán Centro Interdisciplinario de Investigaciones en Tecnologías y Desarrollo Social para el NOA (CIITeD)-CONICET. Facultad de Ingeniería, Universidad Nacional de Jujuy, San Salvador de Jujuy, Argentina https://orcid.org/0000-0001-6773-2247

DOI:

https://doi.org/10.26461/24.02

Palabras clave:

granos andinos, extrusión, propiedades tecnofuncionales

Resumen

Los granos andinos tienen gran potencial de transformación en nuevos productos, pero su aprovechamiento integral es un desafío tecnológico. El objetivo de este trabajo fue modificar las propiedades tecnofuncionales de las harinas integrales de maíces andinos Capia, Bolita y Chulpi para obtener harinas que potencialmente mejoren la calidad de los panes sin gluten. Las harinas se extrudieron en un extrusor monotornillo, usando un diseño ortogonal incompleto con tres niveles de temperatura, humedad y velocidad de tornillo. Se determinó la composición proximal de las harinas integrales nativas. En las harinas nativas y extrudidas se midió el índice de absorción de agua (IAA), el índice de solubilidad en agua (ISA), la capacidad de retención de aceite (CRO), la capacidad de retención de agua (CRA) y el poder de hinchamiento (PH). Los maíces andinos presentaron diferencias significativas en su composición. La mayor parte de la variabilidad de datos se debió a la humedad y la temperatura de extrusión. En general, las muestras de maíz Capia y Bolita tuvieron un comportamiento similar, presentando mayores IAA, CRA y PH a altas humedades y temperaturas; el ISA fue mayor a bajas humedades. La CRO no presentó diferencias significativas entre tratamientos. Las harinas integrales extrudidas de maíz Capia y Bolita con altos IAA, CRA y PH, a 120 °C, 25 % H y 80 rpm, podrían mejorar la consistencia de las masas y la suavidad de panes sin gluten.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Anderson, R.A., Conway H.F., Pfeifer V.F. y Griffin E.L, 1969. Gelatinization of corn grits by roll and extrusion cooking. En: Cereal Science Today, 14, pp.4-12. DOI: https://doi.org/10.1002/star.19700220408

AOAC International, 2005a. Official methods of analysis of AOAC International. 18 ed. Gaithersburg: AOAC. Official Method 925.10.

AOAC International, 2005b. Official methods of analysis of AOAC International. 18 ed. Gaithersburg: AOAC. Official Method 920.87.

AOAC International, 2005c. Official methods of analysis of AOAC International. 18 ed. Gaithersburg: AOAC. Official Method 920.39.

AOAC International, 2005d. Official methods of analysis of AOAC International. 18 ed. Gaithersburg: AOAC. Official Method 923.03.

Cámara Hernández, J. y Arancibia de Cabezas, D., 2007. Maíces andinos y su uso en la Quebrada de Humahuaca y regiones vecinas (Argentina). Buenos Aires: Facultad de Agronomía Universidad de Bs As. ISBN 978-950-29-1011-6.

Caputo, L., Visconti, A. y De Angelis, M., 2015. Selection and use of a Saccharomyces cerevisae strain to reduce phytate content of wholemeal flour during bread-making or under simulated gastrointestinal conditions. En: LWT-Food Science and Technology, 63(1), pp.400-407. DOI: https://doi.org/10.1016/j.lwt.2015.03.058

Chaudhary, A.L., Miler, M., Torley, P.J., Sopade, P.A. y Halley, P.J., 2008. Amylose content and chemical modification effects on the extrusion of thermoplastic starch from maize. En: Carbohydrate Polymers, 74(4), pp.907-913. DOI: https://doi.org/10.1016/j.carbpol.2008.05.017

Chen, H., Zhao, C., Li, J., Hussain, S., Yan, S. y Wang, Q, 2018. Effects of extrusion on structural and physicochemical properties of soluble dietary fiber from nodes of lotus root. En: LWT, 93, pp.204-211. DOI: https://doi.org/10.1016/j.lwt.2018.03.004

Clerici, M.T.P.S., Airoldi, C. y El-Dash, A.A., 2009. Production of acidic extruded rice flour and its influence on the qualities of gluten-free bread. En: LWT-Food Science and Technology, 42(2), pp.618-623. DOI: https://doi.org/10.1016/j.lwt.2008.08.010

Comettant-Rabanal, R., De Carvalho, C.W.P., Ascheri, J.L.R., Hidalgo Chávez, D.W. y Germani, R., 2020. Physical, textural and structural properties of gluten-free breads made from extruded whole grain flours [En línea]. En: Universidade Federal de São João del-Rei. Anais do Congresso on-line Brasileiro de Tecnologia de Cereais e Panificação. Sete Laogas, Brasil. Sete Lagoas: Universidade Federal de São João del-Rei. [Consulta: 2 de Julio de 2021]. Disponible en: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1126445

Cornejo, F. y Rosell, C.M., 2015. Physicochemical properties of long rice grain varieties in relation to gluten free bread quality. En: LWT-Food Science and Technology, 62(2), pp.1203-1210. DOI: https://doi.org/10.1016/j.lwt.2015.01.050

De Pilli, T. y Alessandrino, O., 2020. Effects of different cooking technologies on biopolymers modifications of cereal-based foods: Impact on nutritional and quality characteristics review. En: Critical Reviews in Food Science and Nutrition, 60(4), pp.556-565. DOI: https://doi.org/10.1080/10408398.2018.1544884

Di Rienzo, J.A, Casanoves, F., Balzarini, M.G., González, L., Tablada, M. y Robledo, C.W., 2008. InfoStat [En línea]. Versión 2017.1.2. Córdoba: Universidad Nacional de Córdoba. [Consulta: 5 de junio de 2021]. Disponible en: http://www.infostat.com.ar

Ding, Q.B., Ainsworth, P., Tucker, G. y Marson, H., 2005. The effect of extrusion conditions on the physicochemical properties and sensory characteristics of rice-based expanded snacks. En: Journal of Food engineering, 66(3), pp.283-289. DOI: https://doi.org/10.1016/j.jfoodeng.2004.03.019

Espinosa-Ramírez, J., Rodríguez, A., De la Rosa-Millán, J., Heredia-Olea, E., Pérez-Carrillo, E. y Serna-Saldívar, S.O., 2021. Shear-induced enhancement of technofunctional properties of whole grain flours through extrusion. En: Food Hydrocolloids, 111, 106400. DOI: https://doi.org/10.1016/j.foodhyd.2020.106400

FAO, 1993. El maíz en la nutrición humana. Roma: FAO. (Alimentación y nutrición, Nº 25). ISBN 92-5-303013-5.

Giménez, M.A., Gámbaro, A., Miraballes, M., Roascio, A., Amarillo, M., Sammán, N. y Lobo, M., 2015. Sensory evaluation and acceptability of gluten‐free Andean maize spaghetti. En: J Sci Food Agric., 95(1), pp.186-192. DOI: https://doi.org/10.1002/jsfa.6704

Gómez, M. y Martínez, M.M., 2016. Changing flour functionality through physical treatments for the production of gluten-free baking goods. En: J. Cereal Sci., 67, pp.68-74. DOI: https://doi.org/10.1016/j.jcs.2015.07.009

Kharat, S., Medina-Meza, I. G., Kowalski, R. J., Hosamani, A., Ramachandra, C. T., Hiregoudar, S. y Ganjyal, G. M., 2019. Extrusion processing characteristics of whole grain flours of select major millets (foxtail, finger, and pearl). En: Food and Bioproducts Processing, 114, pp.60-71. DOI: https://doi.org/10.1016/j.fbp.2018.07.002

Luo, S., Yan, X., Fu, Y., Pang, M., Chen, R., Liu, Y., Chen, J. y Liu, C., 2021. The quality of gluten-free bread made of brown rice flour prepared by low temperature impact mill. En: Food Chemistry, 348, pp.129032. DOI: https://doi.org/10.1016/j.foodchem.2021.129032

Moscicki L., 2011. Extrusion-cooking techniques: applications, theory and sustainability. Weinheim: WILEY-VCH Verlag & Co. ISBN: 978-3-527-32888-8.

Narváez-González, E.D., Figueroa Cardenas, J.D.D., Taba, S., Castaño Tostado, E. y Martínez Peniche, R.A., 2007. Efecto del tamaño del gránulo de almidón de maíz en sus propiedades térmicas y de pastificado. En: Revista Fitotecnia Mexicana, 30(3), pp. 269-277. ISSN: 0187-7380.

Paesani, C., Bravo-Núñez, Á. y Gómez, M., 2020. Effect of extrusion of whole-grain maize flour on the characteristics of gluten-free cookies. En: Lebensmittel-Wissenschaft und-Technologie, 132(1), pp.109931. DOI: https://doi.org/10.1016/j.lwt.2020.109931

Raghavendra, S.N., Rastogi, N.K., Raghavarao, K.S.M.S., y Tharanathan, R.N., 2004. Dietary fiber from coconut residue: effects of different treatments and particle size on the hydration properties. En: Eur Food Res Technol., 218(6), pp.563-567. DOI: https://doi.org/10.1007/s00217-004-0889-2

Raghavendra, S.N., Swamy, S.R., Rastogi, N.K., Raghavarao, K.S.M.S., Kumar, S. y Tharanathan, R.N., 2006. Grinding characteristics and hydration properties of coconut residue: A source of dietary fiber. En: Journal of Food Engineering, 72(3), pp.281-286. DOI: https://doi.org/10.1016/j.jfoodeng.2004.12.008

Roman, L., Gomez, M., Hamaker, B.R. y Martinez, M.M., 2018. Shear scission through extrusion diminishes inter-molecular interactions of starch molecules during storage. En: Journal of Food Engineering, 238, pp.134-140. DOI: https://doi.org/10.1016/j.jfoodeng.2018.06.019

Salvador-Reyes, R. y Clerici, M.T.P.S., 2020. Peruvian andean maize: general characteristics, nutritional properties, bioactive compounds, and culinary uses. En: Food Research International, 130, pp.108934. DOI: https://doi.org/10.1016/j.foodres.2019.108934

Sarifudin, A., y Assiry, A.M., 2014. Some physicochemical properties of dextrin produced by extrusion process. En: Journal of the Saudi Society of Agricultural Sciences, 13(2), pp.100-106. DOI: https://doi.org/10.1016/j.jssas.2013.02.001

Silvestre-De-León, R., Espinosa-Ramírez, J., Heredia-Olea, E., Pérez-Carrillo, E. y Serna-Saldívar, S.O., 2020. Biocatalytic degradation of proteins and starch of extruded whole chickpea flours. En: Food and Bioprocess Technology, 13(10), pp.1703-1716. DOI: https://doi.org/10.1007/s11947-020-02511-z

Stephen, A.M. y Phillips, G.O., 2006. Food polysaccharides and their applications. 2a edición. Boca Raton: CRC Press.

Tsatsaragkou, Κ., Protonotariou, S. y Mandala, I., 2016. Structural role of fibre addition to increase knowledge of non-gluten bread. En: Journal of Cereal Science, 67, pp.58-67. DOI: https://doi.org/10.1016/j.jcs.2015.10.003

Wang, J., Suo, G., de Wit, M., Boom, R.M. y Schutyser, M.A., 2016. Dietary fibre enrichment from defatted rice bran by dry fractionation. En: Journal of Food Engineering, 186, pp.50-57. DOI: https://doi.org/10.1016/j.jfoodeng.2016.04.012

Zhang, H. y Xu, G., 2019. Physicochemical properties of vitreous and floury endosperm flours in maize. En: Food Science & Nutrition, 7(8), pp.2605-2612. DOI: https://doi.org/10.1002/fsn3.1114

Zhong, L., Fang, Z., Wahlqvist, M.L., Hodgson, J.M., y Johnson, S.K., 2019. Extrusion cooking increases soluble dietary fibre of lupin seed coat. En: LWT, 99, pp.547-554. DOI: https://doi.org/10.1016/j.lwt.2018.10.018

Descargas

Publicado

2022-10-21

Cómo citar

Miranda, R. M., Domínguez, N. E., Giménez, M. A., Lobo, M. O., & Sammán, N. C. . (2022). Tecnofuncionalidad de harinas integrales de maíces andinos (Zea Mays) nativas y extrudidas. INNOTEC, (24 jul-dic), e599. https://doi.org/10.26461/24.02

Número

Sección

Artículos

Artículos más leídos del mismo autor/a