Inventory of cesium-137 and lead-210 in reference soils from the center-west of Uruguay:

baseline for erosion studies and radiological monitoring

Authors

  • Marcos Tassano Laboratorio de Radioquímica, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay https://orcid.org/0000-0001-6685-4656
  • Pablo Cabral Laboratorio de Radioquímica, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay https://orcid.org/0000-0001-7344-2027
  • Mirel Cabrera Laboratorio de Radioquímica, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay https://orcid.org/0000-0002-5225-1106

DOI:

https://doi.org/10.26461/29.06

Keywords:

Radiological monitoring, Atmospheric radionuclides, Environmental baseline, Sediment dating, Fallout

Abstract

This study characterizes inventory levels, concentration, and vertical distribution of 137Cs and 210Pbex in reference soils across Uruguay, establishing a baseline for future erosion and radiological monitoring studies. Seven sites were analyzed along a climatic gradient from south (Colonia) to north (Rivera). The 137Cs inventories were spatially homogeneous (357.8 – 365.4 Bq.m−2) and closely matched historical atmospheric deposition records from Buenos Aires, validating these as regional references. Conversely, 210Pbex inventories (3973 – 8428 Bq.m−2 in the upper 15 cm) strongly correlated with mean annual precipitation (R2 = 0.92, p = 0.01). Results indicate 137Cs inventories are stable and suitable as a general reference for erosion studies, whereas local-specific references are necessary for 210Pbex due to its environmental sensitivity. These findings provide a crucial baseline for assessing future radiological contamination from potential nuclear events in the region.

Downloads

Download data is not yet available.

References

Appleby, P. G.; Richardson, N. y Nolan, P. J., 1992. Self-absorption corrections for well-type germanium detectors. En: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 71(2), pp. 228-233. DOI: https://doi.org/10.1016/0168-583X(92)95328-O

Argentina. Presidencia de la Nación. Secretaría General. Autoridad Regulatoria Nuclear, 1994. Informe anual 1994. Cap. 2. Buenos Aires: Autoridad Regulatoria Nuclear. [Consulta: 21 de marzo de 2025]. Disponible en: https://www.argentina.gob.ar/arn/informe-anual-1994

Azcune, G.; Pérez Parada, A. y Fornaro, L., 2020. Implementación de la datación mediante 210Pb - 137Cs en Uruguay para el reconocimiento de la variabilidad climático-ambiental del Holoceno superior: Caso de estudio: Laguna de las Nutrias - Rocha - Uruguay. En: INNOTEC, (20), pp. 89–105. DOI: https://doi.org/10.26461/20.04

Beninson, D.; Van der Elst, E. y Ramos, E., 1964. Informe CNEA N.o 133. Buenos Aires: Comisión Nacional de Energía Atómica (CNEA) Argentina.

Beninson, D. ; Ramos, E. y Touzet, R., 1965. Radioestroncio y estroncio estable en los huesos y dietas de los niños. CNEA Informe N.o 149 [En línea]. Buenos Aires: Comisión Nacional de Energía Atómica (CNEA). [Consulta: 29 de abril de 2025]. Disponible en: https://nuclea.cnea.gob.ar/server/api/core/bitstreams/4d1c90cf-b148-4d89-a22e-b7c5786cbd3d/content

Beninson, D.; Menossi, C. A.; Migliori de Beninson, Ambreta., 1972. “Fallout” radiactivo debido a las explosiones en el Pacífico Sur en el período 1966–1970. Informe CNEA-321. Buenos Aires: Comisión Nacional de Energía Atómica (CNEA), Argentina. Dsiponible en: https://nuclea.cnea.gob.ar/server/api/core/bitstreams/4869dd37-2c06-4472-afb3-1fab7629dfc6/content

Beninson, D.; Menossi, C. A.; Migliori de Beninson, Ambreta., 1974. “Fallout” radiactivo debido a las explosiones en el Pacífico Sur en el período 1971–1972. Informe CNEA-376. Buenos Aires: Comisión Nacional de Energía Atómica (CNEA), Argentina. Dsiponible en: https://nuclea.cnea.gob.ar/server/api/core/bitstreams/92a80838-cf04-4ce5-b47c-cfc3efec0bb4/content

Bennett, B. G., 2002. Worldwide dispersion and deposition of radionuclides produced in atmospheric tests: fallout from atmospheric nuclear tests: impact on science and society. En: Health Phys., 82, pp. 644–655. DOI: https://doi.org/10.1097/00004032-200205000-00011

Cabrera, M.; Sanabria, R.; González, J.; Cabral, P.; Tejeda, S.; Zarazua, G.; Melgar-Paniagua, E. y Tassano, M., 2023. Using 137Cs and 210Pbex to assess soil redistribution at different temporal scales along with lithogenic radionuclides to evaluate contrasted watersheds in the Uruguayan Pampa grassland. En: Geoderma, 435, 116502. DOI: https://doi.org/10.1016/j.geoderma.2023.116502.

Cai, W.; McPhaden, M. J.; Grimm, A. M.; Rodrigues, R. R.; Taschetto, A. S.; Garreaud, R. D.; Dewitte, B.; Poveda, G.; Ham, Y.-G.; Santoso, A.; Ng, B.; Anderson, W.; Wang, G.; Geng, T.; Jo, H.-S.; Marengo, J. A.; Alves, L. M.; Osman, M.; Li, S.; Wu, L.; Karamperidou, C.; Takahashi, K. y Vera, C., 2020. Climate impacts of the El Niño–Southern Oscillation on South America. En: Nature Reviews Earth & Environment, 1(4), pp. 215–231. DOI: https://doi.org/10.1038/s43017-020-0040-3

Cardoso-Silva, S.; Mi Kim, B. S.; Ferreira, P. A. L.; Benedetti, B.; Goyenola, G.; Iglesias, C.; Figueira, R. C. L.; López-Rodríguez, A.; Moschini-Carlos, V.; Mello, F. T.; Meerhoff, M. y Pompêo, M., 2024. Reconstructing 90 years of anthropogenic activities in a subtropical reservoir: a chemometric and paleolimnological perspective. En: Environmental Science and Pollution Research, 31, pp. 55756–55773. DOI: https://doi.org/10.1007/s11356-024-34718-4

Castaño, J. P.; Giménez, A.; Ceroni, M.; Furest, J.; Aunchayna, R. y Bidegain, M., 2011. Caracterización agroclimática del Uruguay 1980–2009 [En línea]. Montevideo: INIA. (Serie Técnica No 193). [Consulta: 29 de abril de 2025]. Disponible en: https://ainfo.inia.uy/digital/bitstream/item/2538/1/18429021211104157.pdf

Chaboche, P. A.; Saby, N. P. A.; Laceby, J. P.; Minella, J. P. G.; Tiecher, T.; Ramon, R.; Tassano, M.; Cabral, P.; Cabrera, M.; Bezerra da Silva, Y. J. A.; Lefevre, I. y Evrard, O., 2021. Mapping the spatial distribution of global 137Cs fallout in soils of South America as a baseline for Earth Science studies. En: Earth-Science Reviews, 214, 103542. DOI: https://doi.org/10.1016/j.earscirev.2021.103542

Chaboche, P. A. ; Pointurier, F. ; Sabatier, P. ; Foucher, A.; Tiecher, T.; Minella, J. P. G. Tassano, M.; Hubert, A.; Morera, S.; Guédron, S.; Ardois, C.; Boulet, B.; Cossonnet, C.; Cabral, P.; Cabrera, M.; Chalar, G. y Evrard, O., 2022. 240Pu/239Pu signatures allow refining the chronology of radionuclide fallout in South America. En: Science of The Total Environment, 843, 156943. DOI: https://doi.org/10.1016/j.scitotenv.2022.156943

Dicen, G.; Guillevic, F.; Gupta, S.; Chaboche, P.-A.; Meusburger, K.; Sabatier, P.; Evrard, O. y Alewell, C., 2025. Distribution and sources of fallout 137Cs and 239+240Pu in equatorial and Southern Hemisphere reference soils. En: Earth System Science Data, 17, pp. 1529–1549. DOI: https://doi.org/10.5194/essd-17-1529-2025

Disclose; Science and Global Security y Interprt, 2021. Moruroa Files, 2021 [En línea]. s.n.: s.l. [Consulta: 2 de mayo de 2025]. Disponible en: https://moruroa-files.org/en/about

Foucher, A.; Tassano, M.; Chaboche, P. A.; Chalar, G.; Cabrera, M.; Gonzalez, J.; Cabral, P.; Simon, A. C.; Agelou, M.; Ramon, R.; Tiecher, T. y Evrard, O., 2023. Inexorable land degradation due to agriculture expansion in South American Pampa. En: Nature Sustainability, 6, pp. 662–670. DOI: https://doi.org/10.1038/s41893-023-01074-z

Harris, C. R.; Millman, K. J.; van der Walt, S. J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N. J.; Kern, R.; Picus, M.; Hoyer, S.; van Kerkwijk, M. H.; Brett, M.; Haldane, A.; del Río, J. F.; Wiebe, M.; Peterson, P.; Gérard-Marchant, P.; Sheppard, K.; Reddy, T.; Weckesser, W.; Abbasi, H.; Gohlke, C. y Oliphant, T. E., 2020. Array programming with NumPy. En: Nature, 585(7825), pp. 357–362. DOI: https://doi.org/10.1038/s41586-020-2649-2

Hordedañia, J., 2016. Estudio paleolimnológico de un lago recientemente urbanizado: lago del Parque Rivera, Montevideo, Uruguay. Montevideo: Universidad de la República, Facultad de Ciencias. (Tesis de grado)

Hrnecek, E.; Steier, P. y Wallner, A., 2005. Determination of plutonium in environmental samples by AMS and alpha spectrometry. En: Appl. Radiat. Isot., 63, pp. 633–638. DOI: https://doi.org/10.1016/j.apradiso.2005.05.012Get rights and content

Hunter, J.D., 2007. Matplotlib: A 2D graphics environment. En: Computing in Science & Engineering, 9(3), pp. 90–95. DOI: https://doi.org/10.1109/MCSE.2007.55

International Atomic Energy Agency - IAEA, 1989. Measurement of radionuclides in food and the environment: a guidebook. Viena: IAEA. (Technical Reports Series, No. 295)

International Atomic Energy Agency - IAEA, 2014. Guidelines for using fallout radionuclides to assess soil erosion and effectiveness of soil conservation strategies. Vienna: IAEA. (IAEA-TECDOC-1741). [Consulta: 16 mayo 2025]. Disponible en: https://www-pub.iaea.org/MTCD/Publications/PDF/TE-1741_web.pdf

Igarashi, J.; Zheng, J.; Zhang, Z.; Ninomiya, K.; Satou, Y.; Fukuda, M.; Ni, Y.; Aono, T. y Shinohara, A., 2019. First determination of Pu isotopes (239Pu, 240Pu and 241Pu) in radioactive particles derived from Fukushima Daiichi Nuclear Power Plant accident. En: Sci Rep, 9, 11807. DOI: https://doi.org/10.1038/s41598-019-48210-4

Imanaka, T.; Hayashi, G.y Endo S., 2015. Comparison of the accident process, radioactivity release and ground contamination between Chernobyl and Fukushima-1. En: J Radiat Res., 56 Suppl 1(Suppl 1), pp. 56-61. DOI: https://doi.org/10.1093/jrr/rrv074

Koide, M.; Bertine, K. K.; Chow, T. J. y Goldberg, E. D., 1985. The 240Pu/239Pu ratio, a potential geochronometer. En: Earth Planet. Sci. Lett., 72, pp. 1–8.

Marrero, A.; Tudurí, A.; Pérez, L.; Cuña, C.; Muniz, P.; Lopes Figueira, R.C.; de Mahiques, M.M.; Ferreira, P. A. L.; Pittauerová, D.; Hanebuth, T. y García-Rodríguez, F., 2014. Cambios históricos en el aporte terrígeno de la cuenca del Río de la Plata sobre la plataforma interna Uruguaya. En: Latin American Journal of Sedimentology and Basin Analysis, 21(2), pp. 95–110.

McKinney, W., 2010. Data structures for statistical computing in Python. En: van der Walt, S. y Millman, J., eds. Proceedings of the 9th Python in Science Conference. Austin: SciPy. pp. 51–56.

Muramatsu, Y.; Uchida, S.; Ohmomo, Y.; Watanabe, K. y Tagami, K. 2000. Concentrations of 239Pu and 240Pu and their isotopic ratios in soils from the Chernobyl zone. En: Environmental Science & Technology, 34(14), pp. 2913–2917.

Noguera, A.; Azcune, G.; Bentos Pereira, H. et al., 2022. Radionuclide distribution in the Barra de Valizas—Aguas Dulces Region, Uruguay. En: Environ Earth Sci, 81(195). DOI: https://doi.org/10.1007/s12665-022-10318-8

Odino Moure, M. del R.; Reina, E.; Piuma, L. y Gabrielli, A., 2017. Environmental radioactivity monitoring plan in Uruguay [En línea]. Vienna: International Atomic Energy Agency (IAEA). [Consulta 5 de junio de 2025]. Disponible en: https://inis.iaea.org/records/k53gh-93y12

Python Software Foundation, 2022. Python Language Reference. [En línea]. Vers. 2.7. Wilmington: Python Software Foundation. [Consulta: 30 de marzo de 2025. Disponible en: http://www.python.org.

QGIS Association, 2022. QGIS Geographic Information System [En línea]. Vers. 3.28.9. s.l.: QGIS Association. [Consulta: 30 de marzo de 2025. Disponible en: http://www.qgis.org

Quincke, A.; Tassano, M.; González, J. M.; Grahmann, K.; Pérez-Bidegain, M.; Ciganda, V.; Evrard, O.; Barolin, E. y Cabrera, M., 2024. Erosión del suelo: nuevos métodos de estudio en el “viejo” experimento de rotaciones de La Estanzuela [En línea]. En: Revista INIA Uruguay, (77), pp. 47–50. [Consulta: 29 de abril de 2025]. Disponible en: https://www.inia.uy/erosion-del-suelonuevos-metodos-de-estudio-en-el-viejo-experimento-de-rotaciones-de-la-estanzuela

Raybaut, P., 2009. Spyder-documentation. s.n.: s.l. [Consulta: 30 de marzo de 2025]. Disponible en: https://docs.spyder-de.org/current/index.html

Ribeiro Guevara, S. y Arribére, M., 2002. 137Cs dating of lake cores from the Nahuel Huapi National Park, Patagonia, Argentina: Historical records and profile measurements. En: Journal of Radioanalytical and Nuclear Chemistry, 252, pp. 37–45. DOI: https://doi.org/10.1023/A:1015275418412

UNSCEAR, 1964. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation: Report to the General Assembly, with Scientific Annexes. New York: United Nations. Disponible en: https://www.unscear.org/unscear/en/publications/1964.html

UNSCEAR, 2000a. Sources and effects of ionizing radiation: United Nations Scientific Committee on the Effects of Atomic Radiation 2000 report to the General Assembly, with scientific annexes [En línea]. Vol. I: Sources. New York: United Nations. [Consulta: 29 de abril de 2025]. Disponible en: https://www.unscear.org/unscear/en/publications/2000_1.html

UNSCEAR, 2000b. Sources and effects of ionizing radiation: United Nations Scientific Committee on the Effects of Atomic Radiation 2000 report to the General Assembly, with scientific annexes [En línea]. Vol. II: Effects. New York: United Nations. [Consulta: 29 de abril de 2025]. Disponible en: https://www.unscear.org/unscear/en/publications/2000_2.html

UNSCEAR, 2008. Sources and effects of ionizing radiation: United Nations Scientific Committee on the Effects of Atomic Radiation 2008 report to the General Assembly with scientific annexes [En línea]. Vol. I. New York: United Nations. [Consulta: 29 de abril de 2025]. Disponible en: https://www.unscear.org/unscear/en/publications/2008_1.html

Uruguay. Presidencia de la República. Infraestructura de Datos Espaciales, 2025. Infraestructura de datos espaciales del Uruguay. Montevideo: IDE. [Consulta: 29 de abril de 2025]. Disponible en: https://www.ide.uy

Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; van der Walt, S. J.; Brett, M.; Wilson, J.; Millman, J. K.; Mayorov, N.; Nelson, A .R. J.; Jones, E.; Kern, R.; Larson, E.; Carey, C. J.; Polat, I.; Feng, Y.; Moore, E. W.; VanderPlas, J.; Laxalde, D.; Perktold, J.; Cimrman, R.; Henriksen, I.; Quintero, E. A.; Harris, C. R.; Archibald, A. M.; Ribeiro, A. H.; Pedregosa, F. y van Mulbregt, P., 2020. SciPy 1.0: Fundamental algorithms for scientific computing in Python. En: Nature Methods, 17(3), pp. 261–272.

Zhang, F.; Wang, J.; Baskaran, M.; Zhong, Q.; Wang, Y.; Paatero, J. y Du, J., 2021. A global dataset of atmospheric 7Be and 210Pb measurements: annual air concentration and depositional flux. En: Earth System Science Data Discussions, 13(6), pp. 2963-2994. DOI: https://doi.org/10.5194/essd-2021-35

Published

2025-06-30

How to Cite

Tassano, M., Cabral, P., & Cabrera, M. (2025). Inventory of cesium-137 and lead-210 in reference soils from the center-west of Uruguay:: baseline for erosion studies and radiological monitoring. INNOTEC, (29 ene-jun), e682. https://doi.org/10.26461/29.06

Issue

Section

Articles