Bio-plastic polymers from renewable sources

Authors

  • Diana Baigts Allende Departamento de Ingeniería Química, Alimentos y Ambiental, Universidad de las Américas, San Andrés Cholula, Puebla, México https://orcid.org/0000-0001-6728-5141
  • Alexa Pérez Alva Departamento de Ingeniería Química, Alimentos y Ambiental, Universidad de las Américas, San Andrés Cholula, Puebla, México https://orcid.org/0000-0001-8156-0365
  • María Sandoval Haro Departamento de Ingeniería Química, Alimentos y Ambiental, Universidad de las Américas, San Andrés Cholula, Puebla, México
  • Adriana Sorroza Martínez Departamento de Ingeniería Química, Alimentos y Ambiental, Universidad de las Américas, San Andrés Cholula, Puebla, México
  • Jorge Metri Ojeda Departamento de Ingeniería Química, Alimentos y Ambiental, Universidad de las Américas, San Andrés Cholula, Puebla, México https://orcid.org/0000-0002-7333-3688

DOI:

https://doi.org/10.26461/19.09

Keywords:

galactomannan, chitosan, sodium alginate

Abstract

Biopolymers are useful in the industry due to its elastic properties and sustainability as replacements of non-renewable polymers. In this article, bioplastics were produced and characterized using chitosan (CH), sodium alginate (SA), and galactomannan (GAL) from insects (Hermetia illucens), brown algae (Macrocystis pyrifera) and seeds (Leucaena leucocephala), respectively. The structure of biopolymers was observed by infrared spectroscopy (FTIR) and characterized by viscosity at different concentrations. The developed bioplastics were characterized by color and mechanical properties (texture). The results were compared to standard samples (commercial). The FTIR spectra confrmed the presence of the typical structure (footprint) for the obtained polymers. The SA showed signifcantly higher viscosity for all concentrations compared
to the standard and the other polymers. The bioplastics strength was similar among CH, SA and GAL for all concentrations; only SA (0,5%) demonstrated higher strength than the standard. For color measurements, hue value indicated a red-yellowish color and the chrome increased directly proportional with polymer concentration. The observed properties suggest that these sustainable sources might be an alternative
to bioplastic production, which can be extended to functionalization and molecular interactions for broad applications in different industries.

Downloads

Download data is not yet available.

References

Albuquerque, P.B., Cerqueira, M.A., Vicente, A.A., Teixeira, J.A. and Carneiroda-Cunha, M.G., 2017. Immobilization of bioactive compounds in Cassia grandis galactomannan-based films: influence on physicochemical properties. In: International Journal of Biological Macromolecules, 96, pp.727-735.

Almeida Filho, L.C., de Souza, T.M., Tabosa, P.M., Soares, N.G., Rocha-Bezerra, L.C., Vasconcelos, I.M. and Carvalho, A.F., 2016. Trypsin inhibitor from Leucaena leucocephala seeds delays and disrupts the development of Aedes aegyptia multiple-disease vector. In: Pest Management Science, 73(1), pp.181–187.

Caligiani, A., Marseglia, A., Leni, G., Baldassarre, S., Maistrello, L., Dossena, A. and Sforza, S., 2018. Composition of black soldier fly prepupae and systematic approaches for extraction and fractionation of proteins, lipids and chitin. In: Food Research International, 105, pp.812-820.

Chávez, M., Buenrostro, J. and Aguilar, C., 2019. Handbook of research on food science and technology: Volume 3: Functional foods and nutraceuticals. Ontario: Apple Academy Press. ISBN: 9780429487828.

Chee, S., Wong, P. and Wong, C., 2010. Extraction and characterisation of alginate from brown seaweeds (Fucales, Phaeophyceae) collected from Port Dickson, Peninsular Malaysia. In: Journal of Applied Phycology, 23(2), pp.191 196.

De’Nobili, M.D., Soria, M., Martinefski, M.R., Tripodi, V.P., Fissore, E.N. and Rojas, A.M., 2016. Stability of L-(+) ascorbic acid in alginate edible films loaded with citric acid for antioxidant food preservation. In: Journal of Food Engineering, 175, pp.1-7.

Fernández, J.G. and Ingber, D.E., 2014. Manufacturing of large‐scale functional objects using biodegradable chitosan bioplastic. In: Macromolecular Materials and Engineering, 299(8), pp.932-938.

Ferreira, A., Alves, V. and Coelhoso, I., 2016. Polysaccharide-based membranes in food packaging applications. In: Membranes, 6(2), pp.1-17.

Galus, S. and Lenart, A., 2013. Development and characterization of composite edible films based on sodium alginate and pectin. In: Journal of Food Engineering, 115(4), pp.459–465.

Gomez, C.G., Lambrecht, M.V.P., Lozano, J.E., Rinaudo, M. and Villar, M.A., 2009. Influence of the extraction purification conditions on final properties of alginates obtained from brown algae (Macrocystis pyrifera). In: International Journal of Biological Macromolecules, 44(4), pp.365-371.

Jussen, D., Sharma, S., Carson, J.K. and Pickering, K.L., 2019. Preparation and tensile properties of guar gum hydrogel films. In: Polymers and Polymer Composites, 27(7), pp.1-6.

Mikkonen, K., Heikkila, M., Hélen, H., Hyvonen, L. and Tenkagen, M., 2010. Spruce galactoglucomannan films show promising barrier properties. In: Carbohydrate Polymers, 79(4), pp.1107-1112.

Mittal, N., Mattu, P. and Kaur, G., 2016. Extraction and derivatization of Leucaena leucocephala (Lam.) galactomannan: Optimization and characterization. In: International Journal of Biological Macromolecules, 92, pp.831–841.

Moura, J.M., Farias, B.S., Rodrigues, D.A.S., Moura, C.M., Dotto, G.L. and Pinto, L.A.A., 2015. Preparation of chitosan with different characteristics and its application for biofilms production. In: Journal of Polymers and the Environment, 23(4), pp.470–477.

Popa, E., Gomes, M. and Reis, R., 2011. Cell delivery systems using alginatecarrageenan hydrogel beads and fibers for regenerative medicine applications. In: Biomacromolecules, 12(11), pp.3952-3961.

Revathi, T. and Thambidurai, S., 2017. Synthesis of chitosan incorporated neem seed extract (Azadirachta indica) for medical textiles. In: International Journal of Biological Macromolecules, 104, pp.1890-1896.

Román-Cortés, N., del Rosario García-Mateos, M., Castillo-González, A.M., Sahagún- Castellanos, J. and Jiménez Arellanes, M.A., 2014. Nutritional components and antioxidants of two species of guaje (Leucaena spp.): an underutilized traditional resource. In: Revista Chapingo Serie Horticultura, 20(2), pp.157-170.

Song, Y.S., Kim, M.W., Moon, C., Seo, D.J., Han, Y.S., Jo, Y.H., Noh, M.Y., Park, Y.K., Kim, S.A., Kim, Y.W. and Jung, W.J., 2018. Extraction of chitin and chitosan from larval exuvium and whole body of edible mealworm, Tenebrio molitor. In: Entomological Research, 48(3), pp.227-233.

Souza, V.G.L., Fernando, A.L., Pires, J.R.A., Rodrigues, P.F., Lopes, A.A. and Fernandes, F.M.B., 2017. Physical properties of chitosan films incorporated with natural antioxidants. In: Industrial Crops and Products, 107, pp.565-572.

Verlinden, R.A.J., Hill, D.K., Kenward, M.A., Williams, C.D. and Radecka, I., 2007. Bacterial synthesis of biodegradable polyhydroxyalkanoates. In: Journal of Applied Microbiology, 102(6), pp.1437-1449.

Vox, G., Santagata, G., Malinconico, M., Immirzi, B., Mugnozza, G.S. and Schettini, E., 2013. Biodegradable films and spray coatings as eco-friendly alternative to petro-chemical derived mulching films. In: Journal of Agricultural Engineering, 44(2S), pp.221-225.

Wool, R. and Sun, X., 2005. Bio-Based polymers and composites. 1st ed. San Diego: Elsevier. ISBN: 0-12-763952-7

Zubia, M., Payri, C. and Deslandes, E., 2008. Alginate, mannitol, phenolic compounds and biological activities of two range-extending brown algae, Sargassum mangarevense and Turbinaria ornata (Phaeophyta: Fucales), from Tahiti (French Polynesia). In: Journal of Applied Phycology, 20(6), pp.1033-1043.

Published

2019-12-12

How to Cite

Baigts Allende, D., Pérez Alva, A., Sandoval Haro, M., Sorroza Martínez, A., & Metri Ojeda, J. (2019). Bio-plastic polymers from renewable sources. INNOTEC, (19 ene-jun), 97–108. https://doi.org/10.26461/19.09

Issue

Section

Articles