Effect of high hydrostatic pressure on free sulfhydryl content fromfungal α-amylase

Authors

  • Paula Ormando Instituto Tecnología de Alimentos (ITA), CIA, Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina. Instituto de Tecnología, Fundación UADE, Universidad Argentina de la Empresa, Argentina http://orcid.org/0000-0002-5161-0533
  • Maria Laura Vranic Instituto Tecnología de Alimentos (ITA), CIA, Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina. Departamento de Tecnología. Universidad de Luján (UNLu), Argentina. http://orcid.org/0000-0002-9627-6575
  • Silvina Guidi Instituto Tecnología de Alimentos (ITA), CIA, Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina. Facultad de Agronomía y Ciencias Agroalimentarias, Universidad de Morón (UM), Argentina. http://orcid.org/0000-0001-8745-7123
  • Vanina Ambrosi Instituto Tecnología de Alimentos (ITA), CIA, Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina. Facultad de Farmacia y Bioquímica (FFyB). Universidad de Buenos Aires (UBA), Buenos Aires, Argentina. http://orcid.org/0000-0002-2533-255X

DOI:

https://doi.org/10.26461/15.04

Keywords:

High Pressure, free sulfydryl content, amylase

Abstract

We evaluated the residual thermal effect generated by the consecutive High Hydrostatic Pressure (HHP) cycles relative to the position (upper, central and lower) inside a high pressure vessel determining the free sulfydryl groups [F-SH] from pressurized α-amylase Aspergillus oryzae expressed in μmol SH/g protein. Tis methodology could represent a potential indicator of HHP treatment, allowing to measure in an indirect way the thermal effect during the process. Assays were carried out using a 2L stabilized lab scale equipment, where pressurizing medium (water-propilenglycol:70-30%) was injected at room temperature from the bottom of the vessel. For each cycle, the fluid at room temperature was compressed until reaching the desired pressure (605 MPa), maintained for fve minutes, followed by depressurization. Te cycle was repeated three consecutive times. The free sulfydryl content was assayed statistically using one-way ANOVA (α=0,05) for a factorial design of two factors: positions and consecutive cycles, with three levels, and four repetitions for the complete design. Signifcant differences were obtained in the interaction cycles* position (pvalue = 0,001) and cycles (pvalue = 0,021). These results demonstrate the effect of the heat generation during adiabatic compression, affecting the thermal history of the α-amylase. Due to its sensitivity to pressure, this enzyme could be considered as a potential indicator of high pressure processing in the future, evaluating the difference between processed samples during cycles, and confrming the thermal profle generated within the equipment.

Downloads

Download data is not yet available.

References

Balasubramanian, S. y Balasubramaniam, V., 2003. Compression heating influence of pressure transmitting fluids on bacteria inactivation during high pressure processing. En: Food Research International, 36, pp.661-668.

Chefel, J., 1995. High pressure microbial inactivation and food preservation. En: Food Science Technology
International, 1, pp.75-90.

Denys, S., Van Loey, A. y Hendrickx, M., 2000. A modeling approach for evaluating process uniformity during batch high hydrostatic pressure processing: combination of a numerical heat transfer model and enzyme inactivation kinetics. En: Innovative Food Science. Emerging & Technologies,1, pp.5-19.

Ellman, G., 1959. Tissue sulfydryl groups. En: Archives of Biochemistry and Biophysics, 82(1), pp.70-77.

Fogarty, W. y Kelly, C., 1983. Enzymic developments in the production of maltose and glucose. En: Lafferty, R.M., ed. Enzyme technology. Berlín: Springer.

Funtenberger, S., Dumay, E. y Chefel J., 1995. Pressureinduced aggregation of β-lactoglobulin in ph 7.0 buffers.
En: LWT - Food Science and Technology, 28(4), pp.410-418.

Grauwet, T., Van der Plancken, I., Vervoort, L., Hendrickx, M., y Van Loey, A., 2010. Mapping temperature uniformity in industrial scale HP equipment using enzymatic pressure–temperature–time indicators. En: Journal of Food Engineering, 98, pp.93–102.

Hartmann, Chr. y Delgado, A., 2003. Te influence of transport phenomena during high-pressure processing of
packed food on the uniformity of enzyme inactivation. En: Biotechnology and Bioengineering, 82(6), pp.725-35.

Hoover, D.G., Metrick, C., Papineau, A.M., Farkas, D.F. y Knorr, D., (1989) Biological effects of high hydrostatic pressure on food microorganisms. En: Food Technology, 43, pp.99–107.

Hugas, M., Garriga, M. y Monfort, J., 2002. New mild technologies in meat processing: high pressure as a model
technology. En: Meat Science, 62, pp.359-371.

Kitsubun, P., Hartmann, C. y Delgado, A., 2005. Numerical Investigations of Process Heterogeneities during High
Hydrostatic Pressure Treatment with Turbulent Inflow Conditions. En: Proc. Appl. Math. Mech., 5, pp.573–574.

Makita, T., 1992. Application of high pressure and thermophysical properties of water to biotechnology. En:
Fluid Phase Equilibria, 76, pp.87-95.

Mills, E. N. C., Sancho, A. I., Rigby, N. M., Jenkins, J. A. y Mackie, A. R., 2009. Impact of food processing
on the structural and allergenic properties of food allergens. En: Mol Nutr Food Res, 53, pp.963–9.

Ormando, P., Caron, P. y Larreteguy, A., 2017. Simulación hidrodinámica y térmica de un proceso a altas presiones hidrostáticas mediante OpenFOAM. En: XI Congreso Iberoamericano de Ingeniería de Alimentos, (CIBIA XI). Valparaíso, Chile, (22-25 de octubre de 2017). Valparaíso: CIBIA.

Ormando, P., Sanow, C., Vranic, M. y Vaudagna, S., 2016. Mapeo térmico durante el procesamiento por
altas presiones hidrostáticas En: AIALU. II Congreso Iberoamericano de Ingeniería en Alimentos, (CIIAL 2016).
Punta del Este, Uruguay, (13-14 de octubre de 2016). Punta del Este: AIALU.

Ormando, P., Sanow, C., Vranic, M., Larreteguy, A. y Vaudagna, S., 2015. Procesamiento con Altas Presiones
Hidrostáticas: evaluación del incremento de temperatura del fluido en función del uso, nivel de presión y
distribución dentro del equipo. En: ALACCTA. XV Congreso Argentino de Ciencia y Tecnología de Alimentos,
(CyTAL 2015). Buenos Aires, Argentina (3-5 de noviembre de 2015). Buenos Aires: ALACCTA.

R Core Team, 2013. R: A language and environment for statistical computing. Viena: R Foundation for Statistical
Computing.

Rasanayagam, V., Balasubramaniam, V.M., Ting, E., Sizer, C.E., Bush, C. y Anderson, C., 2003. Compression Heating of Selected Fatty Food Materials during High-pressure Processing. En: Journal of Food Science, 68, pp.254–259.

Téllez, Luis, S. J., Ramírez, J. A., Pérez Lamela, C., Vázquez, M. y Simal Gándara, J., 2001. Aplicación de la alta presión hidrostática en la conservación de los alimentos. En: Ciencia y Tecnología Alimentaria, 3(2). pp.66-80.

Van der Plancken, I., Grauwet, T., Oey, I., Van Loey, A. y Hendrickx, M., 2008. Impact evaluation of high pressure
treatment on foods: considerations on the development of pressure–temperature–time integrators (pTTI’s). En:
Trends in Food Science & Technology, 19, pp.337-348.

Welti-Chanes, J., López-Malo, A., Palou, E., Bermúdez, D., Guerrero-Beltrán, J. A. y Barbosa Cánovas, G. V.,
2005. Fundamentals and applications of high pressure processing of foods, En: Barbosa-Cánovas G.V., Tapia M.S.
y Cano M.P., eds. Novel food process technology. New York: CRC Press. pp.152-157.

Published

2018-06-21

How to Cite

Ormando, P., Vranic, M. L., Guidi, S., & Ambrosi, V. (2018). Effect of high hydrostatic pressure on free sulfhydryl content fromfungal α-amylase. INNOTEC, (15 ene-jun), 50–55. https://doi.org/10.26461/15.04

Issue

Section

Articles