Antioxidant peptides from gastrointestinal digestion of amaranth proteins: A first approach to the evaluation of the intestinal absorption and subsequent activity

Authors

  • Valeria Anahí Tironi Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) (CCT La Plata - CONICET, UNLP)
  • María C. Orsini Delgado Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) (CCT La Plata - CONICET, UNLP)
  • María C. Añón Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) (CCT La Plata - CONICET, UNLP)

DOI:

https://doi.org/10.26461/11.02

Keywords:

Amaranth, antioxidant peptides, gastrointestinal digestion, intestinal absorption

Abstract

Intestinal absorption of antioxidant peptides from simulated gastrointestinal digestion of Amaranthus mantegazzianusproteins was evaluated. Gastrointestinal digests (AD and HD) were obtained from protein isolate (A) and its alcalase hydrolysate (H) and separated by molecular exclusion FPLC into fractions which activity was evaluated by the ORAC and HORAC methods. Active fractions (0,7-1,8 kDa) were submitted to intestinal absorption simulation using monolayers of Caco-2/TC7 cells on polyester inserts (0,4 μm). Samples were seeded in the apical compartment (incubation 3 h, 37 ºC). Original, apical and basolateral samples were analysed for peptide concentration (Lowry method), molecular composition (RP-HPLC) and antioxidant activity (ORAC method). Some peptides were able to cross the cell monolayer, with previous modifications in some cases. The antioxidant potential of the apical compartments increased in all cases due probably to the action of the brush border peptidases. Basolateral compartments presented increments or reductions of the antioxidant potentials respect to the apical ones, depending on which molecules crossed the monolayer in each case. Results suggest a potential intestinal absorption of amaranth antioxidant peptides which would be able to act inside the organism.

Downloads

Download data is not yet available.

References

Antunes, F, Andrade, F, Araújo, F, Ferreira, D, y Sarmento, B., 2013. Establishment of a triple co-culture in vitro cell models to study intestinal absorption of peptide drugs. En: European Journal of Pharmaceutics and Biopharmaceutics,(83), pp.427–435.

Di Virgilio, A., Reigosa, M., Arnal, P. y Fernandez Lorenzo de Mele, M., 2010. Comparative study of the cytotoxic and genotoxic effects of titanium oxide and aluminium oxide nanoparticles in Chinese hamster ovary (CHO-K1) cells. En: Journal of Hazardous Materials, (177), pp.711-718.

Hidalgo, I., Ruba, T. y Borchardt, R., 1989. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for inestinal epithelial permeability. En: Gastroenterology, (96), pp.736-749.

Martínez, E. y Añón, M., 1996. Composition and structural characterization of amaranth protein isolates. An electrophoretic and calorimetric study. En: Journal of Agricultural and Food Chemistry, (44), pp.2523-2530.

Orsini Delgado, M., Tironi, V. y Añón, M., 2011. Antioxidant activity of amaranth proteins or their hydrolysates under simulated gastrointestinal digestion. En: LWT-Food Science and Technology, (44), pp.1752-1760.

Orsini Delgado, M., Galleano, M., Añón, M. y Tironi, V., 2015. Amaranth peptides from gastrointestinal digestion: antioxidant activity against physiological reactive species. En: Plant Foods for Human Nutrition, (70), pp.27–34.

Quiros, A, Davalos, A, Lasuncion, M, y Ramos, M., 2008. Bioavailability of the antihypertensive peptide LHLPLP: Transepithelial flux of HLPLP. En: International Dairy Journal,(18), pp.279–286.

Regazzo, D, Molle, D, Gabai, G, Tome, G, Dupont, D, Leonil, J, y Boutrou, R., 2010. The (193-209) 17 residues peptide of bovine β-casein is transported through Caco-2 monolayer. En: Molecular Nutrition and Food Research, (54), pp.1-8.

Renukuntla, J. Dutt Vadlapudib, A, Patel, A, Boddu, S, Mitra, A., 2013. Approaches for enhancing oral bioavailability of peptides and proteins. En: International Journal of Pharmaceutics, (447), pp.75–93.

Rindler, M. y Traber, M., 1988. A specific sorting signal is not required for the polarized secretion of newly synthesized proteins from cultured intestinal epithelial cells. En: The Journal of Cell Biology, (107), pp.471-479.

Stoscheck, C., 1990. Quantitation of protein. En: Methods in Enzymology, (182), pp.50-69.


Tironi, V. y Añón, M., 2010. Amaranth as a source of antioxidant peptides. Effect of proteolysis. En: Food Research International, (43), pp.315 – 322.

Vermeirssen, V., Camp, J. y Verstraete, W., 2004. Bioavailability of angiotensin I converting enzyme inhibitory peptides. En: British Journal of Nutrition, 92(3), pp.357-366.

Published

2016-07-19

How to Cite

Tironi, V. A., Orsini Delgado, M. C., & Añón, M. C. (2016). Antioxidant peptides from gastrointestinal digestion of amaranth proteins: A first approach to the evaluation of the intestinal absorption and subsequent activity. INNOTEC, 1(11 ene-jul), 18–26. https://doi.org/10.26461/11.02

Issue

Section

Articles