Variabilidad y tendencia de la temperatura superficial de los grandes embalses del Río Negro

Autores/as

DOI:

https://doi.org/10.26461/16.07

Palabras clave:

Climatología, Rincón del Bonete, Baygorria, sensoramiento remoto, calentamiento aguas superfciales

Resumen

La temperatura del agua es un parámetro fundamental para comprender la dinámica de los cuerpos de agua continentales. Se estudió la variabilidad y tendencia de la temperatura superfcial de los grandes embalses del Río Negro, Rincón del Bonete y Baygorria, utilizando 16 años de datos diarios satelitales (MUR-GHRSST) con resolución espacial de 0,01º entre 2002 y 2018. La temperatura media fue de 18,8 ºC y julio (enero) el mes más frío (cálido) con un promedio de 12,1ºC (25,2ºC). Mientras que otoño y primavera presentan la mayor variabilidad intraestacional, invierno presenta la mayor variabilidad interanual. La temperatura superfcial del sistema mostró una tendencia signifcativa de aumento de 1,3°C por década para primavera-verano, mientras que las estaciones de otoño e invierno no presentaron tendencia signifcativa. Se observó a su vez en el eje espacial una tendencia al aumento de la temperatura desde aguas arriba hacia aguas abajo. La información satelital fue correlacionada con mediciones in situ de oportunidad (n=67) y se obtuvo una correlación de 0,94 y un error cuadrático medio de 1,92 ºC. Generar series temporales de mediciones in situ dirigidas permitiría una evaluación del producto y consolidar su uso operativo. Los resultados demuestran la utilidad del sensoramiento remoto de la temperatura del agua en sistemas continentales como herramienta de monitoreo basado en información de libre acceso. Además, se describe por primera vez el ciclo estacional, la variabilidad y tendencia de los embalses del Río Negro, esperando que los resultados aporten para las medidas de manejo ambiental.  

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Allan, J.D. y Castillo, M.M., 2007. Stream ecology: structure and function of running waters. Berlín: Springer Science & Business Media.

Aubriot, L., Delbene, L., Haakonsson, S., Somma, A., Hirsch, F. y Bonilla, S., 2017. Evolución de la eutrofzación en el Río Santa Lucía: influencia de la intensifcación productiva y perspectivas. En: INNOTEC, 14, pp.7-16.

Barton, I.J., 1995. Satellite‐derived sea surface temperatures: current status. En: Journal of Geophysical Research: Oceans, 100(C5), pp.8777-8790.

Bidegain, M., Crisci, C., del Puerto, L., Inda, H., Mazzeo, N., Taks, J. y Terra, R., 2014. Clima de cambios: nuevos desafíos de adaptación en Uruguay. Volumen 1. Variabilidad climática de importancia para el sector productivo [En línea]. Montevideo: FAO, MGAP. [Consulta: 20 desetiembre de 2018]. Disponible en: http://www.fao.org/
docrep/feld/009/as253s/as253s.pdf

Bonilla, S., Haakonsson, S., Somma, A., Gravier, A., Britos, A., Vidal, L. y de la Escalera, G.M., 2015. Cianobacterias y cianotoxinas en ecosistemas límnicos de Uruguay. En: INNOTEC, (10), pp.9-22.

Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M. y West, G.B., 2004. Toward a metabolic theory of ecology. En: Ecology, 85(7), pp.1771-1789.

Chalar, G., Fabián, D., González-Piana, M. y Piccardo, A., 2015. Estado y evolución de la calidad de agua de los tres embalses del Río Negro. Montevideo: Facultad de Ciencias; UTE.

Chalar, G., Gerhard, M., González-Piana, M. y Fabián, D., 2014. Hidroquímica y eutrofzación en tres embalses subtropicales en cadena. En: Marcovecchio, J.E., Botté, S.E. y Freije, R.H. Procesos geoquímicos superfciales en Sudamérica. Salamanca: Nueva Grafcesa. pp.121-148.

Chang, N. B., Imen, S. y Vannah, B., 2015. Remote sensing for monitoring surface water quality status and ecosystem state in relation to the nutrient cycle: A 40-year perspective. En: Critical Reviews in Environmental Science and Technology, 45(2), pp.101-166.

Chen, X. y Tung, K.K., 2018. Global surface warming enhanced by weak Atlantic overturning circulation. En: Nature, 559(7714), pp.387.

Chin, Toshio M., Milliff, Ralph F. y Large, William G., 1998. Basin-scale, high-wavenumber sea surface wind felds from a multiresolution analysis of scatterometer data. En: Journal of atmospheric and oceanic technology, 15(3), pp.741-763.

Crosman, E., Vazquez-Cuervo, J. y Chin, T., 2017. Evaluation of the multi-scale ultra-high resolution (MUR) analysis of lake surface temperature. En: Remote Sensing, 9(7), pp.723.

Dash, P., Ignatov, A., Martin, M., Donlon, C., Brasnett, B., Reynolds, R. W. y Grumbine, R., 2012. Group for high resolution sea surface temperature (GHRSST) analysis fields inter-comparisons—Part 2: Near real time webbased level 4 SST Quality Monitor (L4-SQUAM). En: Drinkwater, Kenneth, Arístegui, Javier, eds. Deep sea research part II: Topical studies in oceanography, 77, pp.31-43.

Daufresne, M., Lengfellner, K. y Sommer, U., 2009. Global warming benefts the small in aquatic ecosystems. En: Proceedings of the National Academy of Sciences, 106(31), pp.12788-12793.

DINAMA, 2018. OAN observatorio ambiental nacional. Módulo calidad de agua. (Base de datos 12/09/2017). [En línea]. Montevideo: DINAMA. [Consulta: 20 de setiembre de 2018]. Disponible en: https://www.dinama.gub.uy/oan.

Fiedler, Emma K., Martin, Matthew J. y Roberts-Jones, Jonah, 2014. An operational analysis of lake surface water temperature. En: Tellus A: Dynamic Meteorology and Oceanography, 66(1), pp.21247.

González-Piana, M., Fabian, D., Delbene, L. y Chalar, G., 2011. Toxics blooms of Microcystis aeruginosa in three Rio Negro reservoirs, Uruguay. En: Harmful Algae News, 43, pp.16-17.

González-Piana, M., Fabián, D., Piccardo, A. y Chalar, G., 2017. Dynamics of total Microcystin LR concentration in three subtropical hydroelectric generation reservoirs in Uruguay, South América. En: Bulletin of Environmental Contamination and Toxicology, 99(4), pp.488-492.

González-Piana, M., Piccardo, A., Ferrer, C., Brena, B., Pírez, M., Fabián, D. y Chalar, G., 2018. Effects of wind mixing in a stratified water column on toxic cyanobacteria and Microcystin-LR distribution in a subtropical reservoir. En: Bulletin of environmental contamination and toxicology, pp.1-6.

Grim, Joseph A., Knievel, Jason C. y Crosman, Erik T., 2013. Techniques for using MODIS data to remotely sense lake water surface temperatures. En: Journal of Atmospheric and Oceanic Technology, 30(10), pp.2434-2451.

Haakonsson, S., Rodríguez-Gallego, L., Somma, A. y Bonilla, S., 2017. Temperature and precipitation shape the distribution of harmful cyanobacteria in subtropical lotic and lentic ecosystems. En: Science of the Total Environment, 609, pp.1132-1139.

Hambright, K.D., Gophen, M. y Serruya, S., 1994. Influence of long‐term climatic changes on the stratifcation of a subtropical, warm monomictic lake. En: Limnology and Oceanography, 39(5), pp.1233-1242.

Hutchinson, G.E., 1941. Limnological studies in Connecticut: IV. Te mechanisms of intermediary metabolism in stratifed lakes. En: Ecological Monographs, 11(1), pp.21-60.

IPCC, 2014. Climate change 2013 – Te physical science basis: Working Group I contribution to the ffh assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press. doi:10.1017/
CBO9781107415324

Joehnk, K.D., Huisman, J.E.F., Sharples, J., Sommeijer, B.E.N., Visser, P.M. y Stroom, J.M., 2008. Summer heatwaves promote blooms of harmful cyanobacteria. En: Global Change Biology, 14(3), pp.495-512.

Kraemer, B. M., Mehner, T. y Adrian, R., 2017. Reconciling the opposing effects of warming on phytoplankton biomass in 188 large lakes. En: Scientifc Reports, 7(1), pp.10762.

Lürling, M., Eshetu, F., Faassen, E.J., Kosten, S. y Huszar, V.L., 2013. Comparison of cyanobacterial and green algal growth rates at different temperatures. En: Freshwater Biology, 58(3), pp.552-559.

Margalef, R., 1983. Limnología. Vol. 1009. Barcelona: Omega.

Martin, M., Dash, P., Ignatov, A., Banzon, V., Beggs, H., Brasnett, B. y Grumbine, R., 2012. Group for High Resolution Sea Surface temperature (GHRSST) analysis felds inter-comparisons. Part 1: A GHRSST multi-product ensemble (GMPE). En: Deep Sea Research Part II: Topical Studies in Oceanography, 77, pp.21-30.

Martínez de la Escalera, G., Kruk, C., Segura, A. M., Nogueira, L., Alcántara, I. y Piccini, C., 2017. Dynamics of toxic genotypes of Microcystis aeruginosa complex (MAC) through a wide freshwater to marine environmental gradient. En: Harmful Algae, 62, pp.73-83.

MGAP, 2017. Anuario estadístico DIEA 2017. [En línea]. Montevideo: MGAP. [Consulta: 28 de junio 2018].
Disponible en: http://www.mgap.gub.uy/sites/default/fles/diea-anuario2017web01a.pdf

MVOTMA, 2018. Indicadores ambientales. Concentración de fósforo total (PT) [En línea]. Montevideo: MVOTMA. [Consulta: 28 de junio de 2018]. Disponible en: https://www.dinama.gub.uy/indicadores_ambientales/fcha/
oan-concentracion-de-fosforo-total/

Oliver, R.L., Hamilton, D.P., Brookes, J.D. y Ganf, G.G., 2012. Physiology, blooms and prediction of planktonic cyanobacteria. En: Whitton B., ed. Ecology of cyanobacteria II. Dordrecht: Springer. pp.155-194.

O’Reilly, C. M., Sharma, S., Gray, D. K., Hampton, S. E., Read, J. S., Rowley, R. J. y Weyhenmeyer, G. A., 2015. Rapid and highly variable warming of lake surface waters around the globe. En: Geophysical Research Letters, 42(24), pp.10-773.

Paerl, H.W., 2014. Mitigating harmful cyanobacterial blooms in a human-and climatically-impacted world. En: Life, 4(4), pp.988-1012.

Pérez, M.D.C., 2002. Fitoplancton del río Negro, Uruguay. En: Limnetica, 21(1-2), pp.81-92.

Piñeiro, G., Perelman, S., Guerschman, J. P. y Paruelo, J. M., 2008. How to evaluate models: observed vs. predicted or predicted vs. observed? En: Ecological Modelling, 216(3-4), pp.316-322.

Poole, G.C. y Berman, C.H., 2001. An ecological perspective on in-stream temperature: natural heat dynamics and mechanisms of human-caused thermal degradation. En: Environmental Management, 27(6), pp.787-802.

Press, W.H., Teukolsky, S.A., Vetterling, W.T. y Flannery, B.P., 1992. Numerical recipes. Cambridge: Cambridge University Press.

Reynolds, C.S., 2006. The ecology of phytoplankton. Cambridge: Cambridge University Press.

Robarts, R.D. y Zohary, T., 1987. Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom‐forming cyanobacteria. En: New Zealand Journal of Marine and Freshwater Research, 21(3), pp.391-399.

Sharma, S., Gray, D. K., Read, J. S., O’Reilly, C. M., Schneider, P., Qudrat, A. y Lenters, J. D., 2015. A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009. En: Scientifc Data, 2, pp.150008.

Smith, T.M., Reynolds, R.W., Peterson, T.C. y Lawrimore, J., 2008: Improvements to NOAA’s historical merged land– ocean surface temperatures analysis (1880–2006). En: Journal of Climate, 21, pp.2283–2296.

Straile, D., 2005. Food webs in lakes—seasonal dynamics and the impact of climate variability. En: Belgrano, A., Sharler, U., Dunne, J. y Ulanowicz, R., eds. Aquatic food webs. An ecosystem approach. En: New York: Oxford University Press. pp.41-50.

Tundisi, J.G., Matsumura-Tundisi, T., Arantes Junior, J.D., Tundisi, J. E.M., Manzini, N. F. y Ducrot, R., 2004. The response of Carlos Botelho (Lobo, Broa) reservoir to the passage of cold fronts as reflected by physical, chemical, and biological variables. En: Brazilian Journal of Biology, 64(1), pp.177-186.

Webb, B.W., Hannah, D.M., Moore, R.D., Brown, L.E. y Nobilis, F., 2008. Recent advances in stream and river temperature research. En: Hydrological Processes, 22(7), p.902-918.

Descargas

Publicado

2018-11-01

Cómo citar

Manta, G., & Alcántara, I. (2018). Variabilidad y tendencia de la temperatura superficial de los grandes embalses del Río Negro. INNOTEC, (16 jul-dic), 17–26. https://doi.org/10.26461/16.07

Número

Sección

Artículos