Tecnologías de control de floraciones de cianobacterias y algas nocivas en cuerpos de agua, con énfasis en el uso de irradiación por ultrasonido

Autores/as

  • Diana Margarita Míguez Caramés Programa Aguas, Proyectos Ambientales, Gerencia I+D+i, Laboratorio Tecnológico del Uruguay (LATU) y Fundación del LATU para la investigación (Latitud). Uruguay http://orcid.org/0000-0001-5364-5951

DOI:

https://doi.org/10.26461/12.06

Palabras clave:

Floraciones de algas y cianobacterias nocivas, Ultrasonido, Eutrofización, Restauración de lagos, Ecotoxicidad

Resumen

Esta revisión es una síntesis de las ventajas y desventajas de los métodos de control de floraciones de cianobacterias y algas nocivas y/o de sus toxinas en cursos de agua o en agua potable. En los últimos años, los fenómenos de floración, o sea, el crecimiento desmedido de cianobacterias, han aumentado en extensión y frecuencia en el mundo, implicando riesgos ambientales y sanitarios cada vez mayores debido a la potencial producción de toxinas. Además, la concomitante disminución de los niveles de oxígeno disuelto en las aguas causan efectos en los ecosistemas que podría incluso desembocar en mortandad de peces. Los métodos utilizados para el control y la remediación de las floraciones van desde los químicos, para destruir las células, a los enfocados en disminuir los niveles de fósforo y otros nutrientes en en el agua y en los sedimentos, hasta los métodos biológicos que se basan en las relaciones predador-presa, y los físicos para atacar la estructura de las células, afectando su flotabilidad o su viabilidad, entre los que se incluye la tecnología de ultrasonido, de aplicabilidad promisoria, peros sobre la cual se requiere seguir investigando para evaluar su eficiencia e inocuidad. También se hace referencia a los planes de investigación y a los proyectos emprendidos en el marco del Programa Aguas LATU/Latitud, utilizando un equipo de irradiación por ultrasonido en un tajamar eutrofizado.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Azevedo, S., Carmichael, W., Jochimsen, E., Rinehart, K., Lau, S., Shaw, G. y Eaglesham, G., 2002. Human intoxication by microcystins during renal dialysis treatment in Caruaru-Brazil. En: Toxicology, 181-182, pp.441-446.

Al-Juboori, R. A., Aravinthan, V., y Yusaf, T., 2015. Impact of pulsed ultrasound on bacteria reduction of natural waters. En: Ultrasonics Sonochemistry, 27, pp.137–147.

Banack, S. A., Murch, S. J. y Cox, P. A., 2006. Neurotoxic flying foxes as dietary items for the Chamorro people, Marianas Islands. En: Journal of Ethnopharmacology, 106, pp.97–104.

Chorus, I., Bartram. J., ed., 1999. Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. London: E&FN Spon.

CORDIS, s.d.Final report summary - CLEARWATERPMPC (Development of an efficient environmentally-friendly Algae Control System, based on ultrasound technology, designed for use in bigger ponds and lakes) [En línea]. [s.l.]: CORDIS.[Consulta: noviembre de 2016]. Disponible en: http://cordis.europa.eu/result/rcn/156461_en.html

Dehghani, M. H., 2016. Removal of cyanobacterial and algal cells from water by ultrasonic waves — A review. En: Journal of Molecular Liquids, 222, pp.1109-1114.

Dunn, F. y Pond, J.B., 1978. Selected non-thermal mechanisms of interaction of ultrasound and biological media. Chap. IX. En: Fry, Francis J., ed., 1978. Ultrasound: its application in medicine and biology . New York: Elsevier.

Gerling, A. B., Browne, R.G.,Gantzer, P.A., Mobley, M.H., Little, J.C. y Carey, C.C., 2014. First report of the successful operation of a side stream supersaturation hypolimnetic oxygenation system in a eutrophic, shallow reservoir. En: Water Resources, 67, pp.129–143

Giannuzzi, L., Sedan, D., Echenique, R. y Andrinolo, D., 2011. An acute case of intoxication with cyanobacteria and cyanotoxins in recreational water in Salto Grande Dam, Argentina. En: Marine Drugs, 9(11), pp. 2164-2175.

He, X., Liu, Y.-L., Conklin, A., Westrick, J., Weavers, L. K., Dionysiou, D. D, Lenhart, J.J., Mouser, P.J., Szlag, D. y Walker, H.W., 2016. Toxic cyanobacteria and drinking water: Impacts, detection, and treatment. En: Harmful Algae, 54, pp.174–193.

Holm, E.R., Stamper, D.M., Brizzolara, R.A., Barnes, L., Deamer, N. y Burkholder, J.M., 2008. Sonication of bacteria, phytoplankton and zooplankton: Application to treatment of ballast water. En: Marine Pollution Bulletin, 56, pp.1201–1208.

International Centre for Research on Cancer, [s.d]. IARC monographs on the evaluation of carcinogenic risks to humans . List of classifications [En línea]. Lyon: IARC. [Consulta: 18 de noviembre de 2016]. Disponible en: http://monographs.iarc.fr/ENG/Classification/latest_classif.php.

Kaser, M. y Perdue, A., 2015. Utilizing ultrasonic technology to manage algal blooms in Lake Rockwell. En: Honors Research Projects, Paper 68.

Kruk, C., Piccini, C., Segura, A., Nogueira, L., Carballo, C., Martínez De La Escalera Siri, G., Calliari, D., Ferrari, G., Simoens, M., Cea, J., Alcántara, I., Vico, P. y Míguez, D., 2015. Herramientas para el monitoreo y sistema de alerta de floraciones de cianobacterias nocivas: Río Uruguay y Río de la Plata. En: INNOTEC, 10, pp. 23-39.

Kundu, S., Coumar, M., Rajendiran, S. y Ajay, Rao, A., 2015. Phosphates from detergents and eutrophication of surface water ecosystem in India. En: Current Science, 108(7), pp.1320-1325.

López, C.B., Jewett, E.B., Dortch, Q., Walton, B.T. y Hudnell, H.K., 2008. Scientific assessment of freshwater harmful algal blooms. Washington: Interagency Working Group on Harmful Algal Blooms, Hypoxia, and Human Health of the Joint Subcommittee on Ocean Science and Technology.

Assessment of Freshwater Harmful Algal Blooms. En Interagency Working Group on Harmful Algal Blooms, Hypoxia, and Human Health of the Joint Subcommittee on Ocean Science and Technology. Washington, DC.

Luo, J., Fang, Z. y Smith, R. L., 2014. Ultrasound-enhanced conversion of biomass to biofuels. En: Progress in Energy and Combustion Science, 41, pp.56–93.

Lürling, M. y Tolman, Y., 2014. Beating the blues: Is there any music in fighting cyanobacteria with ultrasound? En: Water Resources, 66, pp. 361–373.

Merel, S., Walker, D., Chicana, R., Snyder, S., Baurès, E. y Thomas, O., 2013. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. En: Environment International, 59, pp.303–327.

American National Standards Institute, 1988. NSF/ANSI 61: Drinking water system components. Michigan: NSF.

O’Brien Jr, W.D., 1978. Safety of ultrasound. En: deVlieger, M., et al., eds. Clinical handbook of ultrasound. New York: Wiley.

OMS, 2011. Guías para la calidad del agua potable [En línea]. 3ª ed. Ginebra: OMS. [Consulta: 18 de noviembre de 2016]. Disponible en: http://www.who.int/water_sanitation_health/dwq/gdwq3rev/es/

OMS, 2015. Water-related diseases . Cyanotoxins [En línea]. Ginebra: OMS. [Consulta: 11 de junio de 2015]. Disponible en: http://www.who.int/water_sanitation_health/diseases/cyanobacteria/en/

Pablo, J., Banack, S., Cox, P., Johnson, T., Papapetropoulos, S., Bradley, W., Buck, A. y Mash, D., 2009. Cyanobacterial neurotoxin BMAA in ALS and Alzheimer’s disease’. En: Acta Neurologica Scandinavica, 120(4), pp. 216-225.

Paerl, H. W., Gardner, W. S., Havens, K. E., Joyner, A. R., McCarthy, M. J., Newell, S. E., Qing, B. y Scott, J.T., 2016. Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. En: Harmful Algae, 54, pp. 213–222.

Rajasekhar, P., Fan, L., Nguyen, T. y Roddick, F.A., 2012. A review of the use of sonication to control cyanobacterial blooms. En: Water Research, 46(14), pp.4319–4329.

Schmidt, J. R., Wilhelm, S. W. y Boyer, G. L., 2014. The fate of microcystins in the environment and challenges for monitoring. En: Toxins, 6(12), pp.3354–3387. http://doi.org/10.3390/toxins6123354

Søndergaard, M., Liboriussen, L., Pedersen, A.R. y Jeppesen, E., 2008. Lake restoration by fish removal: short-and long-term effects in 36 danish lakes. En: Ecosystems, 11, pp.1291-1305.

Szlag, D. C., Sinclair, J. L., Southwell, B. y Westrick, J. A., 2015. Cyanobacteria and cyanotoxins occurrence and removal from five high-risk conventional treatment drinking water plants. En: Toxins, 7(6), pp.2198–2220. http://doi.org/10.3390/toxins7062198.

Tekile, A., Kim, I. y Kim, J., 2015. Mini-review on river eutrophication and bottom improvement techniques, with special emphasis on the Nakdong River. En: Journal of Environmental Sciences, 30, pp.113-121.

University of Adelaide, 2010. Using ultrasound to control toxic algal blooms [En línea]. Adelaide: University of Adelaide. [Consulta: noviembre de 2016]. Disponible en: https://www.adelaide.edu.au/news/news40181.html

USEPA, 2015. Cyanobacteria/cyanotoxins . Nutrient policy and data [En línea]. Boston: USEPA. [Consulta: 11 de noviembre de 2016]. Disponible en: http://www2.epa.gov/nutrient-policy-data/cyanobacteriacyanotoxins.

Virkutyte, J., 2015. 36 – The use of power ultrasound in biofuel production, bioremediation, and other applications. En: Power Ultrasonics, pp.1095–1122.

Wells, M. L., Trainer, V. L., Smayda, T. J., Karlson, B. S. O., Trick, C. G., Kudela, R. M. y Cochlan, W. P., 2015. Harmful algal blooms and climate change: Learning from the past and present to forecast the future. En: Harmful Algae, 49, pp.68–93.

Wu, X., Joyce, E.M. y Mason, T.J., 2011. The effects of ultrasound on cyanobacteria . En: Harmful algae, 10, pp.738-743.

Zinadini, S., Rahimi, M., Zinatizadeh, A. A. y Shaykhi Mehrabadi, Z., 2015. High frequency ultrasound-induced sequence batch reactor as a practical solution for high rate wastewater treatment. En: Journal of Environmental Chemical Engineering, 3(1), pp.217–226.

Descargas

Publicado

2016-12-22

Cómo citar

Míguez Caramés, D. M. (2016). Tecnologías de control de floraciones de cianobacterias y algas nocivas en cuerpos de agua, con énfasis en el uso de irradiación por ultrasonido. INNOTEC, (12 ago-dic), 54–61. https://doi.org/10.26461/12.06

Número

Sección

Revisiones